当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,直线AB、CD分别经过点(0,1)和(0,2)且平行于x轴,图1中射线OA为正比例函数y=kx(k>0)在第一象限的部分图象,射线OB与OA关于y轴对称;...
题目
题型:不详难度:来源:
如图,直线AB、CD分别经过点(0,1)和(0,2)且平行于x轴,图1中射线OA为正比例函数y=kx(k>0)在第一象限的部分图象,射线OB与OA关于y轴对称;图2为二次函数y=ax2(a>0)的图象.
(1)如图l,求证:
AB
CD
=
1
2

(2)如图2,探索:
AB
CD
的值.
答案
(1)证明:由题意得yA=1,
∴A(
1
k
,1),
∵B与A关于y轴对称,
∴AB=
2
k

同理可得:CD=
4
k

AB
CD
=
1
2


(2)由题意得:A(
1


a
,1),B(-
1


a
,1),
∴AB=
2


a

同理可得:CD=
2


2


a

AB
CD
=
1


2
=


2
2
核心考点
试题【如图,直线AB、CD分别经过点(0,1)和(0,2)且平行于x轴,图1中射线OA为正比例函数y=kx(k>0)在第一象限的部分图象,射线OB与OA关于y轴对称;】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),OB=OC,tan∠ACO=
1
3

(1)求这个二次函数的表达式.
(2)经过C、D两点的直线,与x轴交于点E,在抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形是平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,二次函数y=-


3
2
x2+bx
经过点O、A、B三点,且A点坐标为(4,0),B的坐标为(m,2


3
),点C是抛物线在第三象限的一点,且横坐标为-2
(1)求抛物线的解析式和直线BC的解析式.
(2)直线BC与x轴相交于点D,求△OBC的面积.
题型:不详难度:| 查看答案
某大学的校门是一抛物线水泥建筑物,大门的地面宽度为6米,两侧距地面2米高处各有一个挂校名横匾用的铁环,两铁环的水平距离为4米,则校门的高为多少米?
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为
15
8
时,求直线AN的解析式.
题型:不详难度:| 查看答案
已知:在如图1所示的平面直角坐标系xOy中,A,C两点的坐标分别为A(2,3),C(n,-3)(其中n>0),点B在x轴的正半轴上.动点P从点O出发,在四边形OABC的边上依次沿O-A-B-C的顺序向点C移动,当点P与点C重合时停止运动.设点P移动的路径的长为l,△POC的面积为S,S与l的函数关系的图象如图2所示,其中四边形ODEF是等腰梯形.

(1)结合以上信息及图2填空:图2中的m=______;
(2)求B,C两点的坐标及图2中OF的长;
(3)在图1中,当动点P恰为经过O,B两点的抛物线W的顶点时,
①求此抛物线W的解析式;
②若点Q在直线y=-1上方的抛物线W上,坐标平面内另有一点R,满足以B,P,Q,R四点为顶点的四边形是菱形,求点Q的坐标.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.