当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为5,AB=4.(1)求点B,P,C的坐标...
题目
题型:不详难度:来源:
如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为


5
,AB=4.
(1)求点B,P,C的坐标;
(2)求证:CD是⊙P的切线;
(3)若二次函数y=-x2+(a+1)x+6的图象经过点B,求这个二次函数的解析式,并写出使二次函数值小于一次函数y=2x+b值的x的取值范围.
答案
(1)如图,连接CA.
∵OP⊥AB,
∴OB=OA=2.(1分)
∵OP2+BO2=BP2
∴OP2=5-4=1,OP=1.(2分)
∵BC是⊙P的直径,
∴∠CAB=90°.(也可用勾股定理求得下面的结论)
∵CP=BP,OB=OA,
∴AC=2OP=2.(3分)
∴B(2,0),P(0,1),C(-2,2).(写错一个不扣分)(4分)

(2)证明:∵y=2x+b过C点,
∴b=6∴y=2x+6.(5分)
∵当y=0时,x=-3,
∴D(-3,0).
∴AD=1.(6分)
∵OB=AC=2,AD=OP=1,∠CAD=∠POB=90°,
∴△DAC≌△POB.
∴∠DCA=∠ABC.
∵∠ACB+∠CBA=90°,
∴∠DCA+∠ACB=90°.(也可用勾股定理逆定理证明)(7分)
∴DC是⊙P的切线.(8分)

(3)∵y=-x2+(a+1)x+6过B(2,0)点,
∴0=-22+(a+1)×2+6.
∴a=-2.(9分)
∴y=-x2-x+6.(10分)
因为函数y=-x2-x+6与y=2x+6的图象交点是(0,6)和点D(-3,0)(画图可得此结论)(11分)
所以满足条件的x的取值范围是x<-3或x>0.(12分)
核心考点
试题【如图,点P在y轴上,⊙P交x轴于A,B两点,连接BP并延长交⊙P于C,过点C的直线y=2x+b交x轴于D,且⊙P的半径为5,AB=4.(1)求点B,P,C的坐标】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知:在四边形ABCD中,AB=1,E、F、G、H分别时AB、BC、CD、DA上的点,且AE=BF=CG=DH.设四边形EFGH的面积为S,AE=x(0≤x≤1).
(1)如图①,当四边形ABCD为正方形时,
①求S关于x的函数解析式,并求S的最小值S0
②在图②中画出①中函数的草图,并估计S=0.6时x的近似值(精确到0.01);
(2)如图③,当四边形ABCD为菱形,且∠A=30°时,四边形EFGH的面积是否存在最小值?若存在,求出最小值;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知二次函数y=ax2+bx+c(a>0)的图象经过点C(0,1),且与x轴交于不同的两点A、B,若点A的坐标是(1,0),点B在点A的右侧.
(1)c=______;
(2)求a的取值范围;
(3)若过点C且平行于x轴的直线交该抛物线于另一点D,AD、BC交于点P,记△PCD的面积为S1,△PAB的面积为S2,求S1-S2的值.
题型:不详难度:| 查看答案
如图,抛物线与y轴交于点A(0,4),与x轴交于B、C两点.其中OB、OC是方程的x2-10x+16=0两根,且OB<OC.
(1)求抛物线的解析式;
(2)直线AC上是否存在点D,使△BCD为直角三角形.若存在,求所有D点坐标;反之说理;
(3)点P为x轴上方的抛物线上的一个动点(A点除外),连PA、PC,若设△PAC的面积为S,P点横坐标为t,则S在何范围内时,相应的点P有且只有1个.
题型:不详难度:| 查看答案
某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少20千克.
(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?
(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?
题型:不详难度:| 查看答案
一直线y1=x+b与抛物线y2=x2+c的交点为A(3,5)和B.
(1)求出b、c和点B的坐标;
(2)画出草图,根据图象同答:当x在什么范围时y1≤y2
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.