当前位置:初中试题 > 数学试题 > 二次函数的应用 > (1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球...
题目
题型:不详难度:来源:
(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球飞行的路线是一条抛物线,在离球门14米时,足球到达最大高度
32
3
米,如图1,以球门底部为坐标原点建立坐标系,球门PQ的高度为2.44米,试通过计算说明,球是否会进入球门?
(2)在(1)中,若守门员站在距球门2米远处,而守门员跳起后最多能摸到2.75米高处,他能否在空中截住这次吊射?
(3)如图2,在另一次地面进攻中,假如守门员站在离球门中央2米远的A处防守,进攻队员在离球门中央12米的B处,以120千米/小时的球速起脚射门,射向球门的立柱C,球门的宽度CD为7.2米,而守门员防守的最远水平距离S(米)与时间t(秒)之间的函数关系式为S=10t,问守门员能否挡住这次射门?
(4)在(3)的条件下,∠EAG区域为守门员的截球区域,试估计∠EAG的最大值(精确到0.1°).
答案
(1)设y=a(x-14)2+
32
3
,把(30,0)代入得a=-
1
24

∴y=-
1
24
•(x-14)2+
32
3
,(2分)
当x=0时,y=
15
6
=2.5>2.44,
∴球不会进.(4分)

(2)当x=2时,y=
14
3
>2.75,
∴守门员不能在空中截住这个球(5分)

(3)∵EACD,∴△BEA△BCH,
AE
3.6
=
10
12
∴AE=3.
∴t1=
AE
10
=
3
10
=0.3(秒),
而BE=


102+32
=


109
V=
120×103
3600
=
100
3
(米/秒),
∴t2=


109
100
3
=
3


109
100
≈0.313(秒),
∵t1<t2,∴能挡住这次射门.(8分)

(4)AG=10t,BG=
100
3
t,作GIAE,
BG
BE
=
GI
AE
,∴
100
3
t


109
=
GI
3

∴GI=
100t


109
∴sin∠GAI=
GI
AG
=
100t
109
10t
=0.9578,
∴∠GAI=73.3°∴∠EAG=16.7°(10分)
核心考点
试题【(1)在足球比赛中,当守门员远离球门时,进攻队员常常使用“吊射”的战术(把球高高地挑过守门员的头顶,射入球门).一位球员在离对方球门30米的M处起脚吊射,假如球】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
如图,在直角梯形OABC中,ABOC,O为坐标原点,点A在y轴正半轴上,点C在x轴正半轴上,点B的坐标为(2,2


3
),∠BCO=60°,OH⊥BC,垂足为H.动点P从点H出发,沿线段HO向点O运动,动点Q从点O出发,沿线段OA向点A运动,两点同时出发,速度都为每秒1个单位长度.设点P运动的时间为ts.
(1)求OH的长;
(2)若△OPQ的面积为S(平方单位),求S与t之间的函数关系式.并求t为何值时,△OPQ的面积最大,最大值是多少?
题型:不详难度:| 查看答案
如图,二次函数y=-
1
2
x2+mx+m+
1
2
的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.
(1)当m=
3
2
时,求tan∠ADH的值;
(2)当60°≤∠ADB≤90°时,求m的变化范围;
(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC的距离.
题型:不详难度:| 查看答案
已知抛物线的顶点坐标是(4,2),与y轴的交点是(0,-6)
(1)求抛物线的解析式;
(2)求出抛物线与x轴的交点坐标;
(3)在左边的坐标系中画出这个函数的图象.
题型:不详难度:| 查看答案
已知抛物线y=
1
2
x2-mx+2m-
7
2

(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.
(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形?
题型:不详难度:| 查看答案
某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.