当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,二次函数y=-12x2+mx+m+12的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.(...
题目
题型:不详难度:来源:
如图,二次函数y=-
1
2
x2+mx+m+
1
2
的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.
(1)当m=
3
2
时,求tan∠ADH的值;
(2)当60°≤∠ADB≤90°时,求m的变化范围;
(3)设△BCD和△ABC的面积分别为S1、S2,且满足S1=S2,求点D到直线BC的距离.
答案
(1)∵当m=
3
2
时,y=-
1
2
x2+
3
2
x+2=-
1
2
(x-
3
2
2+
25
8

∴顶点D(
3
2
25
8
),与x轴的交点A(-1,0),B(4,0),
∴DH=
25
8
,AH=
3
2
-(-1)=
5
2

∴tan∠ADH=
AH
DH
=
5
2
25
8
=
4
5


(2)y=-
1
2
x2+mx+m+
1
2
=-
1
2
(x-m)2+
(m+1)2
2

∴顶点D(m,
(m+1)2
2
),
令y=-
1
2
x2+mx+m+
1
2
=0,解得:x=-1或2m+1
则与x轴的交点A(-1,0),B(2m+1,0),
∴DH=
(m+1)2
2
,AH=m-(-1)=m+1,
∴tan∠ADH=
m+1
(m+1)2
2
=
2
m+1

当60°≤∠ADB≤90°时,由对称性得30°≤∠ADH≤45°,
∴当∠ADH=30°时,
2
m+1
=


3
3

∴m=2


3
-1,
当∠ADH=45°时,
2
m+1
=1,
∴m=1,
∴1≤m≤2


3
-1;

(3)设DH与BC交于点M,则点M的横坐标为m.
设过点B(2m+1,0),C(0,m+
1
2
)的直线解析式为;y=kx+b,





(2m+1)k+b=0
b=m+
1
2

解得





k=-
1
2
b=m+
1
2

即y=-
1
2
x+m+
1
2

当x=m时,y=-
1
2
m+m+
1
2
=
m+1
2

∴M(m,
m+1
2
).
∴DM=
(m+1)2
2
-
m+1
2
=
m(m+1)
2
,AB=(2m+1)-(-1)=2m+2,
又,∵S△DBC=S△ABC
m(m+1)
2
•(2m+1)=(2m+2)•(m+
1
2
),
又∵抛物线的顶点D在第一象限,
∴m>0,解得m=2.
当m=2时,A(-1,0),B(5,0),C(0,
5
2
),
∴BC=


52+(
5
2
)
2
=
5


5
2

∴S△ABC=
1
2
×6×
5
2
=
15
2

设点D到直线BC的距离为d.
∵S△DBC=
1
2
BC•d,
1
2
×
5


5
2
•d=
15
2

∴d=
6


5
5

答:点D到直线BC的距离为
6


5
5

核心考点
试题【如图,二次函数y=-12x2+mx+m+12的图象与x轴相交于点A、B(点A在点B的左侧),与y轴相交于点C,顶点D在第一象限.过点D作x轴的垂线,垂足为H.(】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线的顶点坐标是(4,2),与y轴的交点是(0,-6)
(1)求抛物线的解析式;
(2)求出抛物线与x轴的交点坐标;
(3)在左边的坐标系中画出这个函数的图象.
题型:不详难度:| 查看答案
已知抛物线y=
1
2
x2-mx+2m-
7
2

(1)试说明:无论m为何实数,该抛物线与x轴总有两个不同的交点.
(2)如图,当抛物线的对称轴为直线x=3时,抛物线的顶点为点C,直线y=x-1与抛物线交于A、B两点,并与它的对称轴交于点D.
①抛物线上是否存在一点P使得四边形ACPD是正方形?若存在,求出点P的坐标;若不存在,说明理由;
②平移直线CD,交直线AB于点M,交抛物线于点N,通过怎样的平移能使得以C、D、M、N为顶点的四边形是平行四边形?
题型:不详难度:| 查看答案
某种产品的年产量不超过1000吨,该产品的年产量(单位:吨)与费用(单位:万元)之间函数的图象是顶点在原点的抛物线的一部分(如图1);该产品的年销售量(单位:吨)与销售单价(单位:万元/吨)之间函数的图象是线段(如图2),若生产出的产品都能在当年销售完,则年产量是多少吨时,所获毛利润最大,最大利润是多少(毛利润=销售额-费用).
题型:不详难度:| 查看答案
一玩具厂去年生产某种玩具,成本为10元/件,出厂价为12元/件,年销售量为2万件.今年计划通过适当增加成本来提高产品档次,以拓展市场.若今年这种玩具每件的成本比去年成本增加0.7x倍,今年这种玩具每件的出厂价比去年出厂价相应提高0.5x倍,则预计今年年销售量将比去年年销售量增加x倍(本题中0<x≤11).
(1)用含x的代数式表示,今年生产的这种玩具每件的成本为______元,今年生产的这种玩具每件的出厂价为______元.
(2)求今年这种玩具的每件利润y元与x之间的函数关系式.
(3)设今年这种玩具的年销售利润为w万元,求当x为何值时,今年的年销售利润最大?最大年销售利润是多少万元?
注:年销售利润=(每件玩具的出厂价-每件玩具的成本)×年销售量.
题型:不详难度:| 查看答案
矩形OABC的顶点A(-8,0)、C(0,6),点D是BC边上的中点,抛物线y=ax2+bx经过A、D两点,
(1)求点D关于y轴的对称点D′的坐标及a、b的值;
(2)在y轴上取一点P,使PA+PD长度最短,求点P的坐标;
(3)将抛物线y=ax2+bx向下平移,记平移后点A的对应点为A1,点D的对应点为D1.当抛物线平移到某个位置时,恰好使得点O是y轴上到A1、D1两点距离之和OA1+OD1最短的一点,求此抛物线的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.