当前位置:初中试题 > 数学试题 > 二次函数的应用 > 如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D...
题目
题型:不详难度:来源:
如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PDAC,交BC于点D,连接CP.
(1)求该抛物线的解析式;
(2)当动点P运动到何处时,BP2=BD•BC;
(3)当△PCD的面积最大时,求点P的坐标.
答案
(1)由题意,得





16a+4b-4=0
4a-2b-4=0

解得





a=
1
2
b=-1

∴抛物线的解析式为y=
1
2
x2
-x-4;

(2)设点P运动到点(x,0)时,有BP2=BD•BC,
令x=0时,则y=-4,
∴点C的坐标为(0,-4).
∵PDAC,
∴△BPD△BAC,
BD
BC
=
BP
BA

∵BC=


BO2+OC2
=


22+42
=2


5

AB=6,BP=x-(-2)=x+2.
∴BD=
BP×BC
BA
=
2


5
(x+2)
6
=


5
(x+2)
3

∵BP2=BD•BC,
∴(x+2)2=


5
(x+2)
3
×2


5

解得x1=
4
3
,x2=-2(-2不合题意,舍去),
∴点P的坐标是(
4
3
,0),即当点P运动到(
4
3
,0)时,BP2=BD•BC;

(3)∵△BPD△BAC,
S△BPD
S△BAC
=(
BP
AB
)
2

S△BPD=(
BP
AB
)
2
S△BAC=(
x+2
6
)
2
×
1
2
×6×4=
(x+2)2
3

S△PDC=S△PBC-S△PBD=
1
2
×(x+2)×4-
(x+2)2
3
=-
1
3
(x-1)2+3

-
1
3
<0

∴当x=1时,S△PDC有最大值为3.
即点P的坐标为(1,0)时,△PDC的面积最大.
核心考点
试题【如图,抛物线y=ax2+bx-4与x轴交于A(4,0)、B(-2,0)两点,与y轴交于点C,点P是线段AB上一动点(端点除外),过点P作PD∥AC,交BC于点D】;主要考察你对二次函数的应用等知识点的理解。[详细]
举一反三
已知抛物线y=x2-mx+m-2.
(1)求证:此抛物线与x轴有两个不同的交点;
(2)若m是整数,抛物线y=x2-mx+m-2与x轴交于整数点,求m的值;
(3)在(2)的条件下,设抛物线的顶点为A,抛物线与x轴的两个交点中右侧交点为B.若m为坐标轴上一点,且MA=MB,求点M的坐标.
题型:不详难度:| 查看答案
嘉兴月河桥拱形可以近似看作抛物线的一部分.在大桥截面1:1000的比例图上,跨度AB=5cm,拱高OC=0.9cm,线段DE表示河流宽度,DEAB,如图(1)在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图(2).

(1)求出图(2)上以这一部分抛物线为图象的函数解析式,并写出自变量的取值范围;
(2)如果DE与AB的距离OM=0.45cm,求河流宽度(备用数据:


2
≈1.4
,计算结果精确到1米).
题型:不详难度:| 查看答案
定义[p,q]为一次函数y=px+q的特征数.
(1)若特征数是[2,k-2]的一次函数为正比例函数,求k的值;
(2)设点A,B分别为抛物线y=(x+m)(x-2)与x,y轴的交点,其中m>0,且△OAB的面积为4,O为原点,求图象过A,B两点的一次函数的特征数.
题型:不详难度:| 查看答案
有一农户用24m长的篱笆围成一面靠墙(墙长12m),大小相等且彼此相连的三个矩形鸡舍(如图).
(1)鸡场的面积能够达到32m2吗?若能,给出你的方案;若不能,请说明理由;
(2)鸡场的面积能够达到80m2吗?若能,给出你的方案;若不能,请说明理由.
题型:不详难度:| 查看答案
如图,在等腰梯形ABCD中,ADBC,BA=CD,AD的长为4,S梯形ABCD=9.已知点A、B的坐标分别为(1,0)和(0,3).
(1)求点C的坐标;
(2)取点E(0,1),连接DE并延长交AB于P试猜想DF与AB之间的关系,并证明你的结论;
(3)将梯形ABCD绕点A旋转180°后成梯形AB′C′D′,求对称轴为直线x=3,且过A、B′两点的抛物线的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.