当前位置:初中试题 > 数学试题 > 二次函数定义 > (本题满分10分)如图,在平面直角坐标系中,,且,点的坐标是.(1)求点的坐标;(2)求过点的抛物线的表达式;(3)连接,在(2)中的抛物线上求出点,使得....
题目
题型:不详难度:来源:
(本题满分10分)
如图,在平面直角坐标系中,,且,点的坐标是

(1)求点的坐标;
(2)求过点的抛物线的表达式;
(3)连接,在(2)中的抛物线上求出点,使得
答案

(1)
(2)
(3)符合题意的点有四个:
.
解析
解:(1)过点轴,垂足为点,过点轴,垂足为点


,   






.··································· (2分)
(2)设过点的抛物线为
解之,得
所求抛物线的表达式为.················· (5分)
(3)由题意,知轴.
设抛物线上符合条件的点的距离为,则

的纵坐标只能是0,或4. ····················· (7分)
,得.解之,得,或
符合条件的点
,得.解之,得
符合条件的点
综上,符合题意的点有四个:
.··········· (10分)
(评卷时,无不扣分)
核心考点
试题【(本题满分10分)如图,在平面直角坐标系中,,且,点的坐标是.(1)求点的坐标;(2)求过点的抛物线的表达式;(3)连接,在(2)中的抛物线上求出点,使得.】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知二次函数的图象C1与x轴有且只有一个公共点.
(1)求C1的顶点坐标;
(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(—3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;
(3)若的取值范围.
题型:不详难度:| 查看答案
如图,在矩形ABCD中, AB=4,BC=6,当直角三角板MPN 的直角顶点P在BC边上移动时,直角边MP始终经过点A,设直角三角板的另一直角边PN与CD相交于点Q.BP=x,CQ=y,那么y与x之间的函数图象大致是
题型:不详难度:| 查看答案
(本题满分12分)已知抛物线x轴于A(1,0)、B(3,0)两点,交y轴于点C,其顶点为D

(1)求bc的值并写出抛物线的对称轴;
(2)连接BC,过点O作直线OEBC交抛物线的对称轴于点E
求证:四边形ODBE是等腰梯形;
(3)抛物线上是否存在点Q,使得△OBQ的面积等于四边形ODBE的面积的?若存在,求点Q的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,平面直角坐标系中有一矩形ABCD(O为原点),点A、C分别在x轴、y轴上,且C点坐标为(0,6);将BCD沿BD折叠(D点在OC边上),使C点落在OA边的E点上,并将BAE沿BE折叠,恰好使点A落在BD的点F上.

(1)直接写出∠ABE、∠CBD的度数,并求折痕BD所在直线的函数解析式;
(2)过F点作FG⊥x轴,垂足为G,FG的中点为H,若抛物线经过B、H、D三点,求抛物线的函数解析式;
(3)若点P是矩形内部的点,且点P在(2)中的抛物线上运动(不含B、D点),过点P作PN⊥BC分别交BC和BD于点N、M,设h=PM-MN,试求出h与P点横坐标x的函数解析式,并画出该函数的简图,分别写出使PM<NM、PM=MN、PM>MN成立的x的取值范围。
题型:不详难度:| 查看答案
△ABC中,∠A=∠B=30°,AB=.把△ABC放在平面直角坐标系中,使AB的中点位于坐标原点O(如图),△ABC可以绕点O作任意角度的旋转.

(1) 当点B在第一象限,纵坐标是时,求点B的横坐标;
(2) 如果抛物线(a≠0)的对称轴经过点C,请你探究:
① 当时,A,B两点是否都在这条抛物线上?并说明理由;
② 设b=-2am,是否存在这样的m的值,使A,B两点不可能同时在这条抛物线上?若存在,直接写出m的值;若不存在,请说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.