当前位置:初中试题 > 数学试题 > 二次函数定义 > 将抛物线的图像向右平移3个单位后,得到的新抛物线图像与y轴的交点坐标为 ▲   。...
题目
题型:不详难度:来源:
将抛物线的图像向右平移3个单位后,得到的新抛物线图像与y轴的交点坐标为 ▲   
答案
(0,-27)
解析
根据图像平移规则,向右平移3个单位后的抛物线=
与y的交点坐标为(0,-27).
核心考点
试题【将抛物线的图像向右平移3个单位后,得到的新抛物线图像与y轴的交点坐标为 ▲   。】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量 y(件)与销售单价x (元)符合一次函数y= ,
小题1:若该商场获得利润为w 元,试写出利润w 与销售单价x 之间的关系式;销售单价x定为多少元时,商场可获得最大利润,最大利润是多少元?
小题2:若该商场获得利润不低于500元,试确定销售单价的范围.
题型:不详难度:| 查看答案
如图,将一把直角三角板的直角顶点放置于原点O,两直角边与抛物线交于M、N两点,设M、N的横坐标分别为m、n(m﹥0,n﹤0);请解答下列问题:
小题1:当m=1时,n=__ ▲ ; 当m=2时,n=__ ▲ 试猜想m与n满足的关系,并证明你猜想的结论。
小题2:连接M、N,若△OMN的面积为S,求S关于m的函数关系式。
小题3:当三角板绕点O旋转到某一位置时,恰好使得∠MNO=30°,此时过M作MA⊥x轴,垂足为A,求出△OMA的面积
小题4:当m=2时,抛物线上是否存在一点P使M、N、O、P四点构成梯形,若存在,直接写出所有满足条件的点P的坐标;若不存在,说明理由。
题型:不详难度:| 查看答案
已知二次函数的图象如图所示,有下列4个结论,其中正确的结论是
A.B.C.D.

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,已知点A、B、C的坐标分别为(-1,0),(5,0),(0,2)
小题1:求过A、B、C三点的抛物线解析式.
小题2:若点P从A点出发,沿x轴正方向以每秒1个单位长度的速度向B点移动,连接PC并延长到点E,使CE=PC,将线段PE绕点P顺时针旋转90°得到线段PF,连接FB.若点P运动的时间为t秒,(0≤t≤6)设△PBF的面积为S.
①求S与t的函数关系式.
②当t是多少时,△PBF的面积最大,最大面积是多少?
小题3:点P在移动的过程中,△PBF能否成为直角三角形?若能,直接写出点F的坐标;若不能,请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,直线轴交于点A,与y轴交于点C. 抛物线经过A、C两点,且与x轴交于另一点B(点B在点A右侧).

小题1:求抛物线的解析式及点B坐标;
小题2:若点M是线段BC上一动点,过点M的直线EF平行y轴交轴于点F,交抛物线于点E.求ME长的最大值;
小题3:试探究当ME取最大值时,在抛物线x轴下方是否存在点P,使以M、F、B、P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.