当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知:关于的方程有两个不相等的实数根.(1)求的取值范围;(2)抛物线:与轴交于、两点.若且直线:经过点,求抛物线的函数解析式;(3)在(2)的条件下,直线:绕...
题目
题型:不详难度:来源:
已知:关于的方程有两个不相等的实数根.
(1)求的取值范围;
(2)抛物线轴交于两点.若且直线:经过点,求抛物线的函数解析式;
(3)在(2)的条件下,直线:绕着点旋转得到直线,设直线轴交于点,与抛物线交于点不与点重合),当时,求的取值范围.
答案
解:(1)
∵方程有两个不相等的实数根

                
(2)  抛物线中,令,则

解得:     
∴抛物线与轴的交点坐标为
∵直线:经过点
当点坐标为
解得
当点坐标为

解得                 
又∵

∴抛物线的解析式为
(3)设
①当点点的右侧时,

可证
,则
此时,
过点的直线的解析式


求得    
②当点点重合时直线与抛物线只有一个公共点
解得

,求得   
③当点点的左侧时

可证
,则,此时,
,解得
综上所述,当 
解析
(1)方程有两个不等的实数根,则判别式△>0,据此即可得到关于m的不等式求得m的范围;
(2)求得抛物线与x轴的两个交点坐标,经过点,则A可能是两个交点中的任意一个,分两种情况进行讨论,把点的坐标代入直线的解析式,即可求得m的值;
(3)设出M点的坐标,当点M在A点的右侧时,可得据此即可求得M的横坐标,则M的坐标可以得到,代入函数解析式,利用待定系数法即可求得k值;
当点M与A点重合时直线l2与抛物线C只有一个公共点,则两个函数解析式组成的方程组,只有一个解,利用根的判别式即可求解;当点M在A点的左侧时,可证,可以求得M的横坐标,则M的坐标可以得到,代入函数解析式,利用待定系数法即可求得k值.
核心考点
试题【已知:关于的方程有两个不相等的实数根.(1)求的取值范围;(2)抛物线:与轴交于、两点.若且直线:经过点,求抛物线的函数解析式;(3)在(2)的条件下,直线:绕】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知二次函数中,m为不小于0的整数,它的图像与x轴交于点A和点B,点A在原点左边,点B在原点右边.
(1)求这个二次函数的解析式;
(2)点C是抛物线与轴的交点,已知AD=AC(D在线段AB上),有一动点P从点A出发,沿线段AB以每秒1个单位长度的速度移动,同时,另一动点Q从点C出发,以某一速度沿线段CB移动,经过t秒的移动,线段PQ被CD垂直平分,求t的值;
(3)在(2)的情况下,求四边形ACQD的面积.
题型:不详难度:| 查看答案
如图1,抛物线y=nx2-11nx+24n (n<0) 与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.

(1)填空:点B的坐标为(_       ),点C的坐标为(_       );
(2)连接OA,若△OAC为等腰三角形.
①求此时抛物线的解析式;
②如图2,将△OAC沿x轴翻折后得△ODC,点M为①中所求的抛物线上点A与点C两点之间一动点,且点M的横坐标为m,过动点M作垂直于x轴的直线l与CD交于点N,试探究:当m为何值时,四边形AMCN的面积取得最大值,并求出这个最大值.
题型:不详难度:| 查看答案
如图,已知抛物线经过点(0,-3),且该抛物线与x轴的一个交点在(1,0)和(3,0)之间,那么b的取值范围是                 
题型:不详难度:| 查看答案
已知,如图抛物线y=ax2+3ax+c(a>0)与y轴交于C点,与x轴交于A、B两点,A点在B点左侧.点B的坐标为(1,0),OC=3OB.
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD的面积的最大值;
(3)若点E在x轴上,点P在抛物线上,是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
已知二次函数的部分对应值如下表:



0
1
3




1
3
1

则下列判断中正确的是
A.抛物线开口向上
B.抛物线与轴交于负半轴
C.当X大于1.5时,Y随着X的增大而减小
D.当=4时,>0
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.