当前位置:初中试题 > 数学试题 > 二次函数定义 > 科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度/℃……-4...
题目
题型:不详难度:来源:
科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):
温度/℃
……
-4
-2
0
2
4
4.5
……
植物每天高度增长量/mm
……
41
49
49
41
25
19.75
……
由这些数据,科学家推测出植物每天高度增长量是温度的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.
(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;
(2)温度为多少时,这种植物每天高度的增长量最大?
(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度应该在哪个范围内选择?请直接写出结果.
答案
(1);(2)-1℃;(3)
解析

试题分析:(1)根据表中数据可知应选择二次函数,再根据待定系数法求解即可;
(2)先把(1)中求得的函数关系式化为顶点式,再根据二次函数的性质求解即可;
(3)根据“实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm”可得“植物每天高度增长量超过25mm”,再根据表中数据的特征即可作出判断.
(1)选择二次函数,设
,解得
关于的函数关系式是
不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,所以不是的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,所以不是的一次函数;
(2)由(1),得


∴当时,有最大值为50.
即当温度为-1℃时,这种植物每天高度增长量最大.
(3)
点评:此类问题是初中数学的重点和难点,在中考中极为常见,一般以压轴题形式出现,难度较大.
核心考点
试题【科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表):温度/℃……-4】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,点P是直线上的点,过点P的另一条直线交抛物线于A、B两点.

(1)若直线的解析式为,求A、B两点的坐标;
(2)①若点P的坐标为(-2,),当PA=AB时,请直接写出点A的坐标;
②试证明:对于直线上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立.
(3)设直线轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.
题型:不详难度:| 查看答案
如图,已知直线,点A的坐标是(4,0),点D为x轴上位于点A右边的某一点,点B为直线上的一点,以点A、B、D为顶点作正方形.

(1)若图①仅看作符合条件的一种情况,求出所有符合条件的点D的坐标;
(2)在图①中,若点P以每秒1个单位长度的速度沿直线从点O移动到点B,与此同时点Q以相同的速度从点A出发沿着折线A-B-C移动,当点P到达点B时两点停止运动.试探究:在移动过程中,△PAQ的面积最大值是多少?
题型:不详难度:| 查看答案
如图,点B1是抛物线的顶点,点A1、A2都在该抛物线上,四边形OA1B1C1、OA2B2C2均为正方形,点B2在y轴上,直线C2B2与该抛物线交于点,则的值是        

题型:不详难度:| 查看答案
如图,抛物线交x轴的正半轴于点A,交y轴于点B,且OA=OB.

(1)求该抛物线的解析式;
(2)若点M为AB的中点,∠PMQ在AB的同侧以 点M为中心旋转,且∠PMQ=45°,MP交y轴于点C,MQ交x轴于点D. 设AD=m(m>0),BC=n,求n与m之间的函数关系式;
(3)在(2)的条件下,当∠PMQ的一边恰好经过该抛物线与x轴的另一个交点时,求∠PMQ的另一边所在直线的解析式.
题型:不详难度:| 查看答案
已知二次函数y=2(x+1)(x-a),其中a>0,若当x≤2时,y随x增大而减小,当x≥2时y随x增大而增大,则a的值是
A.3B.5C.7D.不确定

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.