当前位置:初中试题 > 数学试题 > 二次函数定义 > 某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车...
题目
题型:不详难度:来源:
某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图①中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图②中的图象.
(1)图②中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为   ,其中自变量x的取值范围是   
(2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?
(3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图②中图象的后半段一次函数的表达式.

答案
(1)y=60x2;0≤x≤
(2)至少需要开放15个普通售票窗口。
(3)y=50x+60。
解析

试题分析:(1)设函数的解析式为y=ax2
把点(1,60)代入解析式得:a=60,则函数解析式为:y=60x2()。
由图可知,自变量x的取值范围是0≤x≤
(2)设需要开放x个普通售票窗口,根据售出车票不少于1450,列出不等式解不等式,求最小整数解即可。
(3)求出普通窗口的函数解析式,从而求出10点时售出的票数,和无人售票窗口当x=时,y的值,然后把运用待定系数法求解析式即可。
解:(1)y=60x2;0≤x≤
(2)设需要开放x个普通售票窗口,
由题意得,80x+60×5≥1450,解得:x≥
∵x为整数,∴x=15。
∴至少需要开放15个普通售票窗口。
(3)设普通售票的函数解析式为y=kx,
把点(1,80)代入得:k=80,
∴普通售票的函数解析式为y=80x。
∵10点时是x=2,∴当x=2时,y=160。
∴上午10点普通窗口售票为160张。
由(1)得,当x=时,y=135;
又∵上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,
∴图②中的一次函数过点(,135),(2,160)。
设一次函数的解析式为:y=mx+n,
把点的坐标代入得:,解得:
∴图②中图象的后半段一次函数的表达式为y=50x+60。
核心考点
试题【某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.

题型:不详难度:| 查看答案
二次函数的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周长为   

题型:不详难度:| 查看答案
如图,抛物线经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式及点C的坐标;
(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;
(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列
结论正确的是
A.h>0,k>0B.h<0,k>0C.h<0,k<0 D.h>0,k<0

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.