当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.
(1)求抛物线的函数表达式;
(2)点D在对称轴的右侧,x轴上方的抛物线上,且∠BDA=∠DAC,求点D的坐标;
(3)在(2)的条件下,连接BD,交抛物线对称轴于点E,连接AE.
①判断四边形OAEB的形状,并说明理由;
②点F是OB的中点,点M是直线BD的一个动点,且点M与点B不重合,当∠BMF=∠MFO时,请直接写出线段BM的长.

答案
(1)
(2)D(4,)。
(3)①四边形OAEB是平行四边形。理由如见解析
②线段BM的长为
解析

试题分析:(1)根据点在曲线上点的坐标满足方程的关系,利用待定系数法求出抛物线的函数表达式。
(2)由∠BDA=∠DAC,可知BD∥x轴,点B与点D纵坐标相同,解一元二次方程求出点D的坐标。
(3)①由BE与OA平行且相等,可判定四边形OAEB为平行四边形。
②点M在点B的左右两侧均有可能,需要分类讨论:
∵O(0,0),B(1,),F为OB的中点,∴F()。
过点F作FN⊥直线BD于点N,则FN==,BN=1﹣=
在Rt△BNF中,由勾股定理得:
∵∠BMF=∠MFO,∠MFO=∠FBM+∠BMF,∴∠FBM=2∠BMF。
(I)当点M位于点B右侧时.
在直线BD上点B左侧取一点G,使BG=BF=,连接FG,则GN=BG﹣BN=1,
在Rt△FNG中,由勾股定理得:

∵BG=BF,∴∠BGF=∠BFG。
又∵∠FBM=∠BGF+∠BFG=2∠BMF,
∴∠BFG=∠BMF。
又∵∠MGF=∠MGF,∴△GFB∽△GMF。
,即
∴BM=
(II)当点M位于点B左侧时,
设BD与y轴交于点K,连接FK,则FK为Rt△KOB斜边上的中线,
∴KF=OB=FB=。∴∠FKB=∠FBM=2∠BMF。
又∵∠FKB=∠BMF+∠MFK,∴∠BMF=∠MFK。∴MK=KF=
∴BM=MK+BK=+1=
综上所述,线段BM的长为
核心考点
试题【如图,在平面直角坐标系中,抛物线经过点A(,0)和点B(1,),与x轴的另一个交点为C.(1)求抛物线的函数表达式;(2)点D在对称轴的右侧,x轴上方的抛物线上】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数的图象如图,点A0位于坐标原点,点A1,A2,A3…An在y轴的正半轴上,点B1,B2,B3…Bn在二次函数位于第一象限的图象上,点C1,C2,C3…Cn在二次函数位于第二象限的图象上,四边形A0B1A1C1,四边形A1B2A2C2,四边形A2B3A3C3…四边形An﹣1BnAnCn都是菱形,∠A0B1A1=∠A1B2A1=∠A2B3A3…=∠An﹣1BnAn=60°,菱形An﹣1BnAnCn的周长为   

题型:不详难度:| 查看答案
如图,抛物线经过△ABC的三个顶点,点A坐标为(0,3),点B坐标为(2,3),点C在x轴的正半轴上.
(1)求该抛物线的函数关系表达式及点C的坐标;
(2)点E为线段OC上一动点,以OE为边在第一象限内作正方形OEFG,当正方形的顶点F恰好落在线段AC上时,求线段OE的长;
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动.设平移的距离为t,正方形DEFG的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求出t的值;若不存在,请说明理由;
(4)在上述平移过程中,当正方形DEFG与△ABC的重叠部分为五边形时,请直接写出重叠部分的面积S与平移距离t的函数关系式及自变量t的取值范围;并求出当t为何值时,S有最大值,最大值是多少?

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线所表示的函数解析式为y=﹣2(x﹣h)2+k,则下列
结论正确的是
A.h>0,k>0B.h<0,k>0C.h<0,k<0 D.h>0,k<0

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=ax2+3与y轴交于点A,过点A与x轴平行的直线交抛物线于点B、C,则BC的长值为   

题型:不详难度:| 查看答案
如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2 与x轴交于点A(﹣1,0)、B(4,0).点M、N在x轴上,点N在点M右侧,MN=2.以MN为直角边向上作等腰直角三角形CMN,∠CMN=90°.设点M的横坐标为m.

(1)求这条抛物线所对应的函数关系式.
(2)求点C在这条抛物线上时m的值.
(3)将线段CN绕点N逆时针旋转90°后,得到对应线段DN.
①当点D在这条抛物线的对称轴上时,求点D的坐标.
②以DN为直角边作等腰直角三角形DNE,当点E在这条抛物线的对称轴上时,直接写出所有符合条件的m值.
(参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.