当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.(1)求抛物线的解析式;(2)在给出的坐标系中画出...
题目
题型:不详难度:来源:
已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.

(1)求抛物线的解析式;
(2)在给出的坐标系中画出抛物线y1=ax2+bx+c(a≠0)及直线y2=x+1的图象,并根据图象,直接写出使得y1≥y2的x的取值范围;
(3)设抛物线与x轴的右边交点为A,过点A作x轴的垂线,交直线y2=x+1于点B,点P在抛物线上,当SPAB≤6时,求点P的横坐标x的取值范围.
答案
解:(1)∵抛物线与直线y2=x+1的一个交点的横坐标为2,
∴交点的纵坐标为2+1=3,即交点坐标为(2,3)。
设抛物线的解析式为y1=a(x﹣1)2+4,把交点坐标(2,3)代入得:
3=a(2﹣1)2+4,解得a=﹣1。
∴抛物线解析式为:y1=﹣(x﹣1)2+4=﹣x2+2x+3。.
(2)令y1=0,即﹣x2+2x+3=0,解得x1=3,x2=﹣1,
∴抛物线与x轴交点坐标为(3,0)和(﹣1,0)。
在坐标系中画出抛物线与直线的图形,如图:

根据图象,可知使得y1≥y2的x的取值范围为﹣1≤x≤2。
(3)由(2)可知,点A坐标为(3,0)。

令x=3,则y2=x+1=3+1=4,
∴B(3,4),即AB=4。
设△PAB中,AB边上的高为h,
则h=|xP﹣xA|=|xP﹣3|。
∴SPAB=AB•h=×4×|xP﹣3|=2|xP﹣3|.
∵SPAB≤6,∴2|xP﹣3|≤6,化简得:|xP﹣3|≤3。
去掉绝对值符号,将不等式化为不等式组:
﹣3≤xP﹣3≤3,解此不等式组,得:0≤xP≤6。
∴当SPAB≤6时,点P的横坐标x的取值范围为0≤xP≤6。
解析

试题分析:(1)首先求出抛物线与直线的交点坐标,然后利用待定系数法求出抛物线的解析式。
(2)确定出抛物线与x轴的两个交点坐标,依题意画出函数的图象.由图象可以直观地看出使得y1≥y2的x的取值范围。
(3)首先求出点B的坐标及线段AB的长度;设△PAB中,AB边上的高为h,则由SPAB≤6可以求出h的范围,这是一个不等式,解不等式求出xP的取值范围。
核心考点
试题【已知抛物线y1=ax2+bx+c(a≠0)的顶点坐标是(1,4),它与直线y2=x+1的一个交点的横坐标为2.(1)求抛物线的解析式;(2)在给出的坐标系中画出】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b24ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
如图,已知抛物线经过A(﹣2,0),B(﹣3,3)及原点O,顶点为C

(1)求抛物线的函数解析式.
(2)设点D在抛物线上,点E在抛物线的对称轴上,且以AO为边的四边形AODE是平行四边形,求点D的坐标.
(3)P是抛物线上第一象限内的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c(a≠0)的图象如图如图所示,若M=a+b﹣c,N=4a﹣2b+c,P=2a﹣b.则M,N,P中,值小于0的数有
A.3个B.2个C.1个D.0个

题型:不详难度:| 查看答案
如图,已知直线与x轴交于点A,与y轴交于点B,将△AOB绕点O顺时针旋转90°后得到△COD.

(1)点C的坐标是     ,线段AD的长等于     
(2)点M在CD上,且CM=OM,抛物线y=x2+bx+c经过点G,M,求抛物线的解析式;
(3)如果点E在y轴上,且位于点C的下方,点F在直线AC上,那么在(2)中的抛物线上是否存在点P,使得以C,E,F,P为顶点的四边形是菱形?若存在,请求出该菱形的周长l;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,已知:如图①,直线与x轴、y轴分别交于A、B两点,两动点D、E分别从A、B两点同时出发向O点运动(运动到O点停止);对称轴过点A且顶点为M的抛物线(a<0)始终经过点E,过E作EG∥OA交抛物线于点G,交AB于点F,连结DE、DF、AG、BG.设D、E的运动速度分别是1个单位长度/秒和个单位长度/秒,运动时间为t秒.

(1)用含t代数式分别表示BF、EF、AF的长;
(2)当t为何值时,四边形ADEF是菱形?判断此时△AFG与△AGB是否相似,并说明理由;
(3)当△ADF是直角三角形,且抛物线的顶点M恰好在BG上时,求抛物线的解析式.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.