当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下...
题目
题型:不详难度:来源:
如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。
答案
解:(1)设直线BC的解析式为
将B(5,0),C(0,5)代入,得,得
∴直线BC的解析式为
将B(5,0),C(0,5)代入,得,得
∴抛物线的解析式
(2)∵点M是抛物线在x轴下方图象上的动点,∴设M
∵点N是直线BC上与点M横坐标相同的点,∴N
∵当点M在抛物线在x轴下方时,N的纵坐标总大于M的纵坐标。

∴MN的最大值是
(3)当MN取得最大值时,N
的对称轴是,B(5,0),∴A(1,0)。∴AB=4。

由勾股定理可得,
设BC与PQ的距离为h,则由S1=6S2得:,即
如图,过点B作平行四边形CBPQ的高BH,过点H作x轴的垂线交点E ,则BH=,EH是直线BC沿y轴方向平移的距离。

易得,△BEH是等腰直角三角形,
∴EH=
∴直线BC沿y轴方向平移6个单位得PQ的解析式:

时,与联立,得
,解得。此时,点P的坐标为(-1,12)或(6,5)。
时,与联立,得
,解得。此时,点P的坐标为(2,-3)或(3,-4)。
综上所述,点P的坐标为(-1,12)或(6,5)或(2,-3)或(3,-4)。
解析
(1)由B(5,0),C(0,5),应用待定系数法即可求直线BC与抛物线的解析式。
(2)构造MN关于点M横坐标的函数关系式,应用二次函数最值原理求解。
(3)根据S1=6S2求得BC与PQ的距离h,从而求得PQ由BC平移的距离,根据平移的性质求得PQ的解析式,与抛物线联立,即可求得点P的坐标。
核心考点
试题【如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,在平面直角坐标系xOy中,顶点为M的抛物线经过点A和x轴正半轴上的点B,AO=OB=2,∠AOB=1200

(1)求这条抛物线的表达式;
(2)连接OM,求∠AOM的大小;
(3)如果点C在x轴上,且△ABC与△AOM相似,求点C的坐标.
题型:不详难度:| 查看答案
某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)

30
40
50
60

销售量y(万个)

5
4
3
2

同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?
题型:不详难度:| 查看答案
如图.在平面直角坐标系中,边长为的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.

(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;
(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.
题型:不详难度:| 查看答案
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).

(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
题型:不详难度:| 查看答案
如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为
A.B.C.D.

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.