当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析...
题目
题型:不详难度:来源:
如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).

(1)求抛物线的解析式;
(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;
(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.
答案
解:(1)∵抛物线y=ax2+bx+3经过点A(1,0),点C(4,3),
,解得
∴抛物线的解析式为y=x2﹣4x+3。
(2)存在。
∵点A、B关于对称轴对称,∴点D为AC与对称轴的交点时△BCD的周长最小。
∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为直线x=2。
设直线AC的解析式为y=kx+b(k≠0),
,解得:
∴直线AC的解析式为y=x﹣1。
当x=2时,y=2﹣1=1。
∴抛物线对称轴上存在点D(2,1),使△BCD的周长最小。
(3)如图,设过点E与直线AC平行线的直线为y=x+m,

联立,消掉y得,x2﹣5x+3﹣m=0。
由△=(﹣5)2﹣4×1×(3﹣m)=0得m=
∴m=时,点E到AC的距离最大,△ACE的面积最大。
此时x=,y=
∴点E的坐标为()。
设过点E的直线与x轴交点为F,则F(,0)。
∴AF=
∵直线AC的解析式为y=x﹣1,∴∠CAB=45°。
∴点F到AC的距离为
又∵
∴△ACE的最大面积,此时E点坐标为()。
解析

试题分析:(1)利用待定系数法求二次函数解析式解答即可。
(2)利用待定系数法求出直线AC的解析式,然后根据轴对称确定最短路线问题,直线AC与对称轴的交点即为所求点D。
(3)根据直线AC的解析式,设出过点E与AC平行的直线,然后与抛物线解析式联立消掉y得到关于x的一元二次方程,利用根的判别式△=0时,△ACE的面积最大,然后求出此时与AC平行的直线,然后求出点E的坐标,并求出该直线与x轴的交点F的坐标,再求出AF,再根据直线l与x轴的夹角为45°求出两直线间的距离,再求出AC间的距离,然后利用三角形的面积公式列式计算即可得解。
核心考点
试题【如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为
A.B.C.D.

题型:不详难度:| 查看答案
如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数)图象上,△BOC的面积为

(1)求反比例函数的关系式;
(2)若动点E从A开始沿AB向B以每秒1个单位的速度运动,同时动点F 从B开始沿BC向C以每秒个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t表示,△BEF的面积用表示,求出S关于t的函数关系式,并求出当运动时间t取何值时,△BEF的面积最大?
(3)当运动时间为秒时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线经过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.
题型:不详难度:| 查看答案
如图,抛物线与y轴相交于点A,与过点A平行于x轴的直线相交于点B(点B在第一象限).抛物线的顶点C在直线OB上,对称轴与x轴相交于点D.平移抛物线,使其经过点A、D,则平移后的抛物线的解析式为   

题型:不详难度:| 查看答案
如图,抛物线与x轴相交于点A、B,与y轴相交于点C,抛物线的对称轴与x轴相交于点M.P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上).分别过点A、B作直线CP的垂线,垂足分别为D、E,连接点MD、ME.

(1)求点A,B的坐标(直接写出结果),并证明△MDE是等腰三角形;
(2)△MDE能否为等腰直角三角形?若能,求此时点P的坐标;若不能,说明理由;
(3)若将“P是抛物线在x轴上方的一个动点(点P、M、C不在同一条直线上)”改为“P是抛物线在x轴下方的一个动点”,其他条件不变,△MDE能否为等腰直角三角形?若能,求此时点P的坐标(直接写出结果);若不能,说明理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.