当前位置:初中试题 > 数学试题 > 二次函数定义 > 在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA...
题目
题型:不详难度:来源:
在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:
①PO2=PA•PB;
②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;
③当时,BP2=BO•BA;
④△PAB面积的最小值为
其中正确的是     (写出所有正确说法的序号)
答案
③④。
解析
设A(m,km),B(n,kn),其中m<0,n>0.
联立得:=kx,即x2﹣3kx﹣6=0,∴m+n=3k,mn=﹣6。
设直线PA的解析式为y=ax+b,将P(0,﹣4),A(m,km)代入得:
,解得。∴直线PA的解析式为
令y=0,得x=,∴直线PA与x轴的交点坐标为(,0)。
同理可得,直线PB的解析式为,直线PB与x轴交点坐标为(,0)。

∴直线PA、PA与x轴的交点关于y轴对称,即直线PA、PA关于y轴对称。
①说法①错误,理由如下:
如答图1所示,
∵PA、PB关于y轴对称,∴点A关于y轴的对称点A′落在PB上。
连接OA′,则OA=OA′,∠POA=∠POA′。

假设结论:PO2=PA•PB成立,即PO2=PA′•PB,∴
又∵∠BOP=∠BOP,∴△POA′∽△PBO。
∴∠POA′=∠PBO。∴∠AOP=∠PBO。
而∠AOP是△PBO的外角,∴∠AOP>∠PBO。矛盾。
∴说法①错误。
②说法②错误。理由如下:
易知:,∴
由对称可知,PO为△APB的角平分线,
。∴
∴(PA+AO)(PB﹣BO)=(PA+AO)[﹣()]
=(PA+AO)(PA﹣OA)=(PA2﹣AO2)。
如答图2所示,过点A作AD⊥y轴于点D,则OD=﹣km,PD=4+km,

∴PA2﹣AO2=(PD2+AD2)﹣(OD2+AD2
=PD2﹣OD2=(4+km)2﹣(﹣km)2=8km+16。
∵m+n=3k,∴k=(m+n)。
∴PA2﹣AO2=8•(m+n)•m+16=m2+mn+16=m2+×(﹣6)+16=m2
∴(PA+AO)(PB﹣BO)=(PA2﹣AO2)=m2=﹣mn=﹣×(﹣6)=16。
∴(PA+AO)(PB﹣BO)为定值,所以说法②错误。
③说法③正确,理由如下:
时,联立方程组:,得A(,2),B(,﹣1),
∴BP2=12,BO•BA=2×6=12。∴BP2=BO•BA。故说法③正确。
④说法④正确,理由如下:
∵SPAB=SPAO+SPBO=OP•(﹣m)+OP•n=OP•(n﹣m)=2(n﹣m)
∴当k=0时,△PAB面积有最小值,最小值为。故说法④正确。
综上所述,正确的说法是:③④。
核心考点
试题【在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:①PO2=PA】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
在平面直角坐标系中,已知抛物线(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(4,3),直角顶点B在第四象限.

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q.
(i)若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标;
(ii)取BC的中点N,连接NP,BQ.试探究是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图1,已知抛物线C经过原点,对称轴与抛物线相交于第三象限的点M,与x轴相交于点N,且

(1)求抛物线C的解析式;
(2)将抛物线C绕原点O旋转1800得到抛物线,抛物线与x轴的另一交点为A,B为抛物线上横坐标为2的点。
①若P为线段AB上一动点,PD⊥y轴于点D,求△APD面积的最大值;
②过线段OA上的两点E、F分别作x轴的垂线,交折线O-B-A于E1、F1,再分别以线段EE1、FF1为边作如图2所示的等边△AE1E2、等边△AF1F2,点E以每秒1个长度单位的速度从点O向点A运动,点F以每秒1个长度单位的速度从点A向点O运动,当△AE1E2有一边与△AF1F2的某一边在同一直线上时,求时间t的值。
题型:不详难度:| 查看答案
先阅读以下材料,然后解答问题:
材料:将二次函数的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)。
解:在抛物线上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到,3),再向下平移2个单位得到,1);点B向左平移1个单位得到(0,4),再向下平移2个单位得到(0,2)。
设平移后的抛物线的解析式为
则点,1),(0,2)在抛物线上。
可得:,解得:
所以平移后的抛物线的解析式为:
根据以上信息解答下列问题:
将直线向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式。
题型:不详难度:| 查看答案
如图,抛物线(a≠0)交x轴于A、B两点,A点坐标为(3,0),与y轴交于点C(0,4),以OC、OA为边作矩形OADC交抛物线于点G.

(1)求抛物线的解析式;
(2)抛物线的对称轴l在边OA(不包括O、A两点)上平行移动,分别交x轴于点E,交CD于点F,交AC于点M,交抛物线于点P,若点M的横坐标为m,请用含m的代数式表示PM的长;
(3)在(2)的条件下,连结PC,则在CD上方的抛物线部分是否存在这样的点P,使得以P、C、F为顶点的三角形和△AEM相似?若存在,求出此时m的值,并直接判断△PCM的形状;若不存在,请说明理由。
题型:不详难度:| 查看答案
若抛物线与y轴的交点为(0,﹣3),则下列说法不正确的是【   】
A.抛物线开口向上
B.抛物线的对称轴是x=1
C.当x=1时,y的最大值为﹣4
D.抛物线与x轴的交点为(-1,0),(3,0)

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.