当前位置:初中试题 > 数学试题 > 二次函数定义 > 直角坐标平面上将二次函数y=x2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为(   )A.(0,0)B.(1,﹣1)C.(0,﹣1)D.(﹣1,﹣...
题目
题型:不详难度:来源:
直角坐标平面上将二次函数y=x2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为(   )
A.(0,0)B.(1,﹣1)C.(0,﹣1)D.(﹣1,﹣1)

答案
D
解析

试题分析:∵由函数图象平移的法则可知,将二次函数y=x2-2的图象向左平移1个单位,再向上平移1个单位,所得函数的解析式为:y=(x+1)2-1,∴其顶点坐标为(-1,-1).故选D.
核心考点
试题【直角坐标平面上将二次函数y=x2﹣2的图象向左平移1个单位,再向上平移1个单位,则其顶点为(   )A.(0,0)B.(1,﹣1)C.(0,﹣1)D.(﹣1,﹣】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数的图象如图所示,有下列结论:
,②,③,④ ,⑤
其中正确的个数有(    )
A.1个B.2个C.3个D.4个

题型:不详难度:| 查看答案
已知二次函数的图象以为顶点,且过点
(1)求该二次函数的解析式;
(2)求该二次函数图象与坐标轴的交点坐标;
题型:不详难度:| 查看答案
已知抛物线y=ax2+bx+3(a≠0)经过A(3,0),B(4,1)两点,且与y轴交于点C.

(1)求抛物线y=ax2+bx+3(a≠0)的函数关系式及点C的坐标;
(2)如图(1),连接AB,在题(1)中的抛物线上是否存在点P,使△PAB是以AB为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图(2),连接AC,E为线段AC上任意一点(不与A、C重合)经过A、E、O三点的圆交直线AB于点F,当△OEF的面积取得最小值时,求点E的坐标.
题型:不详难度:| 查看答案
如图,矩形OABC在平面直角坐标系中,O为坐标原点,点A(0,4),C(2,0),将矩形OABC绕点O按顺时针方向旋转1350,得到矩形EFGH(点E与O重合).

(1)若GH交y轴于点M,则∠FOM=      ,OM=        
(2)矩形EFGH沿y轴向上平移t个单位.
①直线GH与x轴交于点D,若AD∥BO,求t的值;
②若矩形EFHG与矩形OABC重叠部分的面积为S个平方单位,试求当0<t≤时,S与t之间的函数关系式.
题型:不详难度:| 查看答案
如图,要设计一个矩形的花坛,花坛长60 m,宽40 m,有两条纵向甬道和一条横向甬道,横向甬道的两侧有两个半圆环形甬道,半圆环形甬道的内半圆的半径为10 m,横向甬道的宽度是其它各甬道宽度的2倍.设横向甬道的宽为2x m.(π的值取3)

(1)用含x的式子表示两个半圆环形甬道的面积之和;
(2)当所有甬道的面积之和比矩形面积的多36 m2时,求x的值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.