当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知点E、F在抛物线的对称轴的同侧 (点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD...
题目
题型:不详难度:来源:
已知点E、F在抛物线的对称轴的同侧 (点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD与x轴、直线y=2ax+b所围成图形的面积,.则S与的数量关系式为:S=              

 
答案
.
解析

试题分析:首先根据题意可求得:y1,y2的值,A与C的坐标,即可用x1与x2表示出AB,CD,BD的值,易得四边形ABCD是直角梯形,即可得S=(AB+CD)•BD,然后代入其取值,整理变形,即可求得S与y1、y2的数量关系式:
根据题意得:
∵点A、C在直线y=2ax+b上,∴点A的坐标为:(x1,2ax1+b),点C的坐标为:(x2,2ax2+b).
∴AB=2ax1+b,CD=2ax2+b,BD=.
∵EB⊥BD,CD⊥BD,∴AB∥CD. ∴四边形ABCD是直角梯形.


∴S与y1、y2的数量关系式为:S=
核心考点
试题【已知点E、F在抛物线的对称轴的同侧 (点E在点F的左侧),过点E、F分别作x轴的垂线,分别交x轴于点B、D,交直线y=2ax+b于点A、C,设S为直线AB、CD】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知方程有两个不同的实数根,方程也有两个不同的实数根,且其两根介于方程的两根之间,求k的取值范围.
题型:不详难度:| 查看答案
将抛物线y=3x2向左平移2个单位,再向下平移1个单位,所得抛物线为(  )
A.B.
C.D.

题型:不详难度:| 查看答案
二次函数y=ax2+bx+c图象上部分点的坐标满足下表:
x

﹣3
﹣2
﹣1
0
1

y

﹣3
﹣2
﹣3
﹣6
﹣11

则该函数图象的顶点坐标为(  )
A.(﹣3,﹣3)    B.   (﹣2,﹣2)    C. (﹣1,﹣3)       D. (0,﹣6)
题型:不详难度:| 查看答案
二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.其中正确的是__________(把正确的序号都填上).

题型:不详难度:| 查看答案
如图,已知点A (2,4) 和点B (1,0)都在抛物线上.

(1)求m、n;
(2)向右平移上述抛物线,记平移后点A的对应点为A′,点B的对应点为B′,若四边形A A′B′B为菱形,求平移后抛物线的表达式;
(3)记平移后抛物线的对称轴与直线AB′ 的交点为C,试在x轴上找一个点D,使得以点B′、C、D为顶点的三角形与△ABC相似.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.