当前位置:初中试题 > 数学试题 > 二次函数定义 > 抛物线y=2(x+1)(x-3)的对称轴是(     )A.直线x=-1B.直线x="1" C.直线x=2D.直线x=3...
题目
题型:不详难度:来源:
抛物线y=2(x+1)(x-3)的对称轴是(     )
A.直线x=-1B.直线x="1" C.直线x=2D.直线x=3

答案
B.
解析

试题分析:根据抛物线的解析式首先可以确定与x轴的交点坐标,然后根据交点的坐标即可求解:
∵y=2(x+1)(x-3),∴当y=0时,x=-1或 x=3.
∴抛物线的对称轴为x=1.
故选B.
核心考点
试题【抛物线y=2(x+1)(x-3)的对称轴是(     )A.直线x=-1B.直线x="1" C.直线x=2D.直线x=3】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
将函数y=2x2的图象向右平行移动1个单位,再向上平移5个单位,可得到的抛物线是(      )
A.B.
C.D.

题型:不详难度:| 查看答案
抛物线上部分点的横坐标x,纵坐标y的对应值如下表:




0
1
2

y

0
4
6
6
4

由上表可知,下列说法正确的个数是 (       )
①抛物线与x轴的一个交点为   ②抛物线与轴的交点为
③抛物线的对称轴是:       ④在对称轴左侧y随x增大而增大
A.1     B.2     C.3     D.4
题型:不详难度:| 查看答案
若将函数的图像向右平行移动1个单位,则它与直线的交点坐标是(   )
A.(-3,0)和(5,0)B.(-2,b)和(6,b)
C.(-2,0)和(6,0)D.(-3,b)和(5,b)

题型:不详难度:| 查看答案
抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).

(1)求抛物线的解析式;
(2)求抛物线与x轴的交点坐标;
(3)画出这条抛物线大致图象;
(4)根据图象回答:
①当x取什么值时,y>0 ?
②当x取什么值时,y的值随x的增大而减小?
题型:不详难度:| 查看答案
小明投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果小明想要每月获得的利润不低于2000元,那么小明每月的成本最少需要多少元?
(成本=进价×销售量)
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.