当前位置:初中试题 > 数学试题 > 二次函数定义 > 一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1...
题目
题型:不详难度:来源:
一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,第二年的月利润稳定在第1年的第12个月的水平.
(1)设使用回收净化设备后的1至x月(1≤x≤12)的利润和为y,写出y关于x的函数关系式,并求前几个月的利润和等于700万元;
(2)当x为何值时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)求使用回收净化设备后两年的利润总和.
答案
(1)5个月;(2)3;(3)6360万元.
解析

试题分析:(1)因为使用回收净化设备后的1至x月(1≤x≤12)的利润的月平均值w(万元)满足w=10x+90,所以y=xw=x(10x+90);要求前几个月的利润和=700万元,可令y=700,利用方程即可解决问题;(2)因为原来每月利润为120万元,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等,所以有y=120x,解之即可求出答案;(3)因为使用回收净化设备后第一、二年的利润=12×(10×12+90),求出它们的和即可.
试题解析:解:(1)y=xw=x(10x+90)=10x2+90x,
10x2+90x=700,
解得:x=5或﹣14(不合题意,舍去),
答:前5个月的利润和等于700万元;
(2)10x2+90x=120x,
解得:x=3或0(不合题意,舍去),
答:当x为3时,使用回收净化设备后的1至x月的利润和与不安装回收净化设备时x个月的利润和相等;
(3)第一年全年的利润是:12(10×12+90)=2520(万元),
前11个月的总利润是:11(10×11+90)=2200(万元),
∴第12月的利润是2520﹣2200=320万元,
第二年的利润总和是12×320=3840万元,
2520+3840=6360(万元).
答:使用回收净化设备后两年的利润总和是6360万元.
核心考点
试题【一家化工厂原来每月利润为120万元,从今年1月起安装使用回收净化设备(安装时间不计),一方面改善了环境,另一方面大大降低原料成本.据测算,使用回收净化设备后的1】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知:抛物线y=ax2+bx+c(a>0)的图象经过点B(12,0)和C(0,-6),对称轴为x=2.

(1)求该抛物线的解析式;
(2)点D在线段AB上且AD=AC,若动点P从A出发沿线段AB以每秒1个单位长度的速度匀速运动,同时另一动点Q以某一速度从C出发沿线段CB匀速运动,问是否存在某一时刻,使线段PQ被直线CD垂直平分?若存在,请求出此时的时间t(秒)和点Q的运动速度;若不存在,请说明理由;
(3)在(2)的结论下,直线x=1上是否存在点M,使△MPQ为等腰三角形?若存在,请求出所有点M的坐标;若不存在请说明理由.
题型:不详难度:| 查看答案
对于每个非零自然数轴上有两点,以表示这两点间的距离,其中,的横坐标分别是方程组的解,则的值等于           
题型:不详难度:| 查看答案
抛物线y=x2向上平移2个单位,得到新抛物线的函数表达式是(   )
A.y=x2-2B.y=(x-2)2C.y=x2+2D.y=(x+2)2

题型:不详难度:| 查看答案
如图,抛物线y=-x2+2x+m(m<0)与x轴相交于点A(x1,0)、B(x2,0),点A在点B的左侧.当x=x2-2时,y______0(填“>”“=”或“<”号).

题型:不详难度:| 查看答案
已知x=2m+n+2和x=m+2n时,多项式x2+4x+6的值相等,且m﹣n+2≠0,则当x=3(m+n+1)时,多项式x2+4x+6的值等于  
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.