当前位置:初中试题 > 数学试题 > 二次函数定义 > 已知一个二次函数的关系式为 y=x2-2bx+c.(1)若该二次函数的图象与x轴只有一个交点,①则b、c 应满足关系为                ;②若该二...
题目
题型:不详难度:来源:
已知一个二次函数的关系式为 y=x2-2bx+c.
(1)若该二次函数的图象与x轴只有一个交点,
①则b、c 应满足关系为                
②若该二次函数的图象经过A(m,n)、B(m +6,n)两点,求n的值;
(2)若该二次函数的图象与x轴有两个交点C(6,0)、D(k,0),线段CD(含端点)上有若干个横坐标为整数的点,且这些点的横坐标之和为21,求b的取值范围.
答案
(1)c=b2,9;(2)7≤b<7.5或2.5<b≤3.5.
解析

试题分析:(1)①根据二次函数的图象与x轴只有一个交点,则b2-4ac=0,由此可得到b、c 应满足关系;
②把A(m,n)、B(m+6,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;
(2)因为y=x2-2bx+c图象与x轴交于C(6,0),即可得到36-12b+c=0,所以c=12b-36,进而得到k=2b-6,再根据C、D之间的整数和为21,即可求出b的取值范围.
(1)①∵二次函数的图象与x轴只有一个交点,
∴b2-4ac=0,
∴c=b2
②由
得b=m+3,则c=(m+3)2
于是,n=m2-2(m+3)m+(m+3)2=9;
(2)∵y=x2-2bx+c图象与x轴交于C(6,0)
∴36-12b+c=0,∴c=12b-36
∴y=x2-2bx+12b-36,
令y=0得x2-2bx+12b-36=0
解得:x1=6,x2=2b-6,即k=2b-6;
∵C、D之间的整数和为21,
∴由8≤k<9,或-1<k≤1,
∴8≤2b-6<9,或-1<2b-6≤1,
解得7≤b<7.5或2.5<b≤3.5.
核心考点
试题【已知一个二次函数的关系式为 y=x2-2bx+c.(1)若该二次函数的图象与x轴只有一个交点,①则b、c 应满足关系为                ;②若该二】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
已知二次函数y=x2+2ax-2.
(1)求证:经过点(0,)且与x轴平行的直线与该函数的图象总有两个公共点;
(2)该函数和y=-x2+(a-3)x+的图象都经过x轴上两个不同的点A、B,求a的值.
题型:不详难度:| 查看答案
抛物线y =-2x2-3的顶点坐标是                 
题型:不详难度:| 查看答案
如图,二次函数的图象与轴交于两点,与轴交于点,已知点(-1,0),点C(0,-2).
(1)求抛物线的函数解析式;
(2)试探究的外接圆的圆心位置,并求出圆心坐标;
(3)此抛物线上是否存在点P,使得以P、A、C、B为顶点的四边形为梯形.若存在,请写出所有符合条件的P点坐标;若不存在,请说明理由;
(4)若点是线段下方的抛物线上的一个动点,求面积的最大值以及此时点的坐标.

题型:不详难度:| 查看答案
如图,已知抛物线y=﹣x2+bx+4与x轴相交于A、B两点,与y轴相交于点C,若已知A点的坐标为A(﹣2,0).
(1)求抛物线的解析式及它的对称轴;
(2)求点C的坐标,连接AC、BC并求线段BC所在直线的解析式;
(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.

题型:不详难度:| 查看答案
如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)、(0,3)之间(包含端点),则下列结论:①当x>3时,y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正确的是(  )。
A.①②B.③④C.①④D.①③

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.