当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点...
题目
题型:不详难度:来源:
如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PD⊥AB于点D.
(1)求抛物线的解析式;
(2)设点P的横坐标为m.
①用含m的代数式表示线段PD的长,并求出线段PD长的最大值;
②连结PB,线段PC把△PDB分成两个三角形,是否存在适合的m的值,使这两个三角形的面积比为1:2.若存在,直接写出m的值;若不存在,请说明理由.

答案
(1);(2)①;②0或3.
解析

试题分析:(1)在y=x+1中,当y=0时,x=-1;当y=5时,x=4,依此可得A与B的坐标;将A与B坐标代入抛物线解析式求出a与b的值,即可确定出抛物线解析式;
(2)①设直线AB与y轴交于点E,由CP与y轴平行,得到∠ACP=∠AEO,求出AE与OA的长,得出sin∠AEO的值,即为sin∠ACP的值,由P的横坐标为m,分别代入直线与抛物线解析式得到两个纵坐标之差为PC的长,由PD=PCsin∠ACP表示出PD,利用二次函数的性质求出PD的最大值即可;
②存在,过D作DF⊥CP,过B作BG⊥PQ,交PC延长线与点Q,表示出DF与BG,进而表示出三角形DCP面积与三角形BCP面积,根据面积之比为1:2列出关于m的方程,求出方程的解得到m的值即可.
试题解析:(1)在中,当y=0时,x=-1;当y=5时,x=4.
∴A(-1,0)、B(4,5) .
将A(-1,0)、B(4,5)分别代入y=ax2+bx-3中,得
,解得
∴所求解析式为.
(2)①设直线AB交y轴于点E,求得E(0,1),∴OA=OE,∠AEO=45°,∠ACP=∠AEO="45°,"
. 
,则


∴PD的最大值为
②当m=0或m=3时,PC把△PDB分成两个三角形的面积比为1:2.
如图,过D作DF⊥CP,过B作BG⊥PQ,交PC延长线与点Q,
∵sin∠ACP=,∴cos∠ACP=.
在Rt△PDF中,DF=DP•sin∠DPC=DP•cos∠ACP=.
又∵BG=4-m,
.
时,解得:m=0;
2时,解得:m=3.
故当m=0或m=3时,PC把△PDB分成两个三角形的面积比为1:2.

核心考点
试题【如图,在平面直角坐标系中,直线与抛物线y=ax2+bx-3(a≠0)交于A、B两点,点A在x轴上,点B的纵坐标为5.点P是直线AB下方的抛物线上的一动点(不与点】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
在平面直角坐标系中,已知抛物线 (b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当取最大值时,点Q的坐标为________.

题型:不详难度:| 查看答案
如图,在平面直角坐标系xOy中,已知抛物线(0≤x≤3)在x轴上方的部分,记作C1,它与x轴交于点O,A1,将C1绕点A1旋转180°得C2,C2与x 轴交于另一点A2.请继续操作并探究:将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;将C3绕点A2旋转180°得C4,与x 轴交于另一点A4,这样依次得到x轴上的点A1,A2,A3,…,An,…,及抛物线C1,C2,…,Cn,….则点A4的坐标为         ;Cn的顶点坐标为               (n为正整数,用含n的代数式表示) .

题型:不详难度:| 查看答案
抛物线(b,c均为常数)与x轴交于两点,与y轴交于点
(1)求该抛物线对应的函数表达式;
(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P的坐标.
题型:不详难度:| 查看答案
已知抛物线与x轴交于点、C,与y轴交于点B(0,3),抛物线的顶点为p。
(1)求抛物线的解析式;
(2)若抛物线向下平移k个单位后经过点(-5,6)。
①求k的值及平移后抛物线所对应函数的最小值;
②设平移后抛物线与y轴交于点D,顶点为Q,点M是平移后的抛物线上的一个动点。请探究:当点M在何处时,△MBD的而积是△MPQ面积的2倍?求出此时点M的坐标。

题型:不详难度:| 查看答案
抛物线可以由抛物线平移得到,则下列平移过程正确的是
A.先向左平移2个单位,再向上平移3个单位
B.先向左平移2个单位,再向下平移3个位
C.先向右平移2个单位,再向下平移3个单位
D.先向右平移2个单位,再向上平移3个单位

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.