当前位置:初中试题 > 数学试题 > 二次函数定义 > 如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:①2a+b=...
题目
题型:不详难度:来源:
如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:①2a+b=0;②4a+2b+c>0 ③B点坐标为(4,0);④当x<-1时,y>0.其中正确的是

A.①②      B.③④     C.①④      D.②③ 
答案
C.
解析

试题分析::∵对称轴为x=1,
∴x=-=1,
∴-b=2a,
∴2a+b=0,故①正确;
∵抛物线与y轴交于负半轴,即x=0时,y<0,
又对称轴为x=1,
∴x=2时,y<0,
∴4a+2b+c<0,故②错误;
∵点A坐标为(-1,0),对称轴为x=1,
∴点B坐标为(3,0),故③错误;
由图象可知当x<-1时,y>0.故④正确.
故选C.
核心考点
试题【如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点A坐标为(-1,0).则下面的四个结论:①2a+b=】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
如图,已知抛物线y=x2+bx+c经过A(-1, 0)、B(4, 5)两点,过点B作BC⊥x轴,垂足为C.
(1)求抛物线的解析式;
(2)求tan∠ABO的值;
(3)点M是抛物线上的一个点,直线MN平行于y轴交直线AB于N,如果以M、N、B、C为顶点的四边形是平行四边形,求出点M的横坐标.

题型:不详难度:| 查看答案
已知二次函数的图象与x轴的一个交点为(1,0),则它与x轴的另一个交点坐标是
A.(1,0)B.(-1,0)C.(2,0)D.(-2,0)

题型:不详难度:| 查看答案
如图1,抛物线轴交于两点,与轴交于点,连结AC,若
(1)求抛物线的解析式;
(2)抛物线对称轴上有一动点P,当时,求出点的坐标;
(3)如图2所示,连结是线段上(不与重合)的一个动点.过点作直线,交抛物线于点,连结,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?

题型:不详难度:| 查看答案
如图,若抛物线Y=X2  改为抛物线Y= X2+BX+C 其他条件不变  求矩形ABCD的面积

题型:不详难度:| 查看答案
已知P(﹣3,m)和Q(1,m)是抛物线y=2x2+bx+1上的两点.
(1)求b的值;
(2)判断关于x的一元二次方程2x2+bx+1=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;
(3)将抛物线y=2x2+bx+1的图象向上平移k(k是正整数)个单位,使平移后的图象与x轴无交点,求k的最小值.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.