当前位置:初中试题 > 数学试题 > 二次函数定义 > 二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )A.k<-3B.k...
题目
题型:不详难度:来源:
二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )
A.k<-3B.k>-3C.k<3D.k>3

答案
D.
解析

试题分析:∵当ax2+bx+c≥0,y=ax2+bx+c(a≠0)的图象在x轴上方,
∴此时y=|ax2+bx+c|=ax2+bx+c,
∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴上方部分的图象,
∵当ax2+bx+c<0时,y=ax2+bx+c(a≠0)的图象在x轴下方,
∴此时y=|ax2+bx+c|=﹣(ax2+bx+c)
∴此时y=|ax2+bx+c|的图象是函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象,
∵y=ax2+bx+c(a≠0)的顶点纵坐标是﹣3,
∴函数y=ax2+bx+c(a≠0)在x轴下方部分与x轴对称的图象的顶点纵坐标是3,
∴y=|ax2+bx+c|的图象如图,

∵观察图象可得当k≠0时,
函数图象在直线y=3的上方时,纵坐标相同的点有两个,
函数图象在直线y=3上时,纵坐标相同的点有三个,
函数图象在直线y=3的下方时,纵坐标相同的点有四个,
∴若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,
则函数图象应该在y=3的上边,
故k>3.
故选D.
核心考点
试题【二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是(     )A.k<-3B.k】;主要考察你对二次函数定义等知识点的理解。[详细]
举一反三
二次函数的顶点坐标为          .
题型:不详难度:| 查看答案
矩形纸片ABCD中,AB=5,AD=4.
(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).

题型:不详难度:| 查看答案
如图,二次函数的图象交x轴于A(﹣1,0),B(2,0),交y轴于C(0,﹣2),过A,C画直线.
(1)求二次函数的解析式;
(2)点P在x轴正半轴上,且PA=PC,求OP的长;
(3)点M在二次函数图象上,以M为圆心的圆与直线AC相切,切点为H.
①若M在y轴右侧,且△CHM∽△AOC(点C与点A对应),求点M的坐标;
②若⊙M的半径为 ,求点M的坐标.

题型:不详难度:| 查看答案
已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B(-2,0),顶点为A.
(1)求该抛物线的解析式和A点坐标;
(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;
(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.

题型:不详难度:| 查看答案
如图,直线y=x+m与抛物线y=x2-2x+l交于不同的两点M、N(点M在点N的左侧).
(1)设抛物线的顶点为B,对称轴l与直线y=x+m的交点为C,连结BM、BN,若S△MBC=S△NBC,求直线MN的解析式;
(2)在(1)条件下,已知点P(t,0)为x轴上的一个动点,
①若△PMN为直角三角形,求点P的坐标.
②若∠MPN>90°,则t的取值范围是     

题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.