当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 如图,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。(1)写出点A、B的坐标;(2)求直线MN所对...
题目
题型:广东省中考真题难度:来源:
如图,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。
(1)写出点A、B的坐标;
(2)求直线MN所对应的函数关系式;
(3)利用尺规作出线段AB关于直线MN的对称图形(保留作图痕迹,不写作法)。
答案
解:(1)由点的坐标的知识可得A(-1,3),B(-4,2);
(2)因为直线MN过坐标原点,所以可设直线MN的关系式为y=kx,又点M的坐标是(1,2),
∴2=1×k,即k=2,
∴直线MN的关系式为y=2x;
(3)如图:

线段A′B′即为线段AB关于直线MN的对称图形。
核心考点
试题【如图,在方格纸上建立平面直角坐标系,线段AB的两个端点都在格点上,直线MN经过坐标原点,且点M的坐标是(1,2)。(1)写出点A、B的坐标;(2)求直线MN所对】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
如图,直线与双曲线(x>0)交于点A,将直线向右平移个单位后,与双曲线(x>0)交于点B,与x轴交于点C,若,则k=(    )。
题型:湖北省中考真题难度:| 查看答案
在平面几何中,我们学过两条直线平行的定义,下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行,解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式。
题型:山东省中考真题难度:| 查看答案
一次函数y=kx+b的图象与x轴、y轴分别交于点A(2,0)、B(0,4)。
(1)求该函数的解析式;
(2)O为坐标原点,设OA、AB的中点分别为C、D,P为OB上一动点,求PC+PD的最小值,并求取得最小值时P点坐标。
题型:湖北省中考真题难度:| 查看答案
茂名石化乙烯厂某车间生产甲、乙两种塑料的相关信息如下表,
请你解答下列问题:
(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y1元和y2元,分别求y1和y2与x的函数关系式(注:利润=总收入-总支出);
(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,求该月生产甲、乙塑料各多少吨,获得的总利润最大?最大 利润是多少?
题型:广东省中考真题难度:| 查看答案
已知:如图,直线l:经过点,一组抛物线的顶点B1(1,y1),B2(2,y2),B3(3,y3),…,Bn(n,yn)(n为正整数)依次是直线l上的点,这组抛物线与x轴正半轴的交点依次是:A1(x1,0),A2(x2,0),A3(x3,0),…,An+1(xn+1,0)(n为正整数),设x1=d(0<d<1)。
(1)求b的值;
(2)求经过点A1、B1、A2的抛物线的解析式(用含d的代数式表示);
(3)定义:若抛物线的顶点与x轴的两个交点构成的三角形,则这种抛物线就称为“美丽抛物线”。
探究:当d(0<d<1)的大小变化时,这组抛物线中是否存在美丽抛物线?若存在,清你求出相应的d 的值。
题型:广东省中考真题难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.