当前位置:初中试题 > 数学试题 > 待定系数法求一次函数解析式 > 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量(  )A.20kgB.25k...
题目
题型:不详难度:来源:
某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量(  )
A.20kgB.25kgC.28kgD.30kg

答案
设y与x的函数关系式为y=kx+b,
由题意可知





300=30k+b
900=50k+b
,所以k=30,b=-600,所以函数关系式为y=30x-600,
当y=0时,即30x-600=0,所以x=20.故选A.
核心考点
试题【某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量(  )A.20kgB.25k】;主要考察你对待定系数法求一次函数解析式等知识点的理解。[详细]
举一反三
如图,直线l的解析式为y=-
4
3
x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤3)
(1)求A、B两点的坐标;
(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S,试探究S与t之间的函数关系;
(3)当S=2时,是否存在点R,使△RNM△AOB?若存在,求出R的坐标;若不存在,请说明理由.
题型:不详难度:| 查看答案
如图,直线y=
1
2
x+2
分别交x轴、y轴于点A、C,已知P是该直线在第一象限内的一点,PB⊥x轴于点B,S△APB=9.
(1)求△AOC的面积;
(2)求点P的坐标;
(3)设点R与点P在同一反比例函数的图象上,且点R在直线PB的右侧,作RT⊥x轴于点T,是否存在点R使得△BRT与△AOC相似,若存在,求点R的坐标;若不存在,说明理由.
题型:不详难度:| 查看答案
观察图形

上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为______.
题型:不详难度:| 查看答案
一个矩形被直线分成面积为x,y的两部分,则y与x之间的函数关系只可能是(  )
A.B.C.D.
题型:不详难度:| 查看答案
如图,直线y=2x+4分别与x轴、y轴交于A、B两点,在此直线上有一点P,坐标是(-
4
5
12
5
)
,过点P的直线交y轴于点E,交x轴于点F,F点的坐标为(4,0).
(1)求直线EF的解析式.
(2)求证:AB=EF.
(3)请你判断△APF是否是直角三角形,并说出理由.
题型:不详难度:| 查看答案
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.