当前位置: > 如图,已知F1,F2是椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为(  ) A.32...
题目
如图,已知F1,F2是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦点,点P在椭圆C上,线段PF2与圆x2+y2=b2相切于点Q,且点Q为线段PF2的中点,则椭圆C的离心率为(  )
A.
3
2

B.
5
3

C.
6
3

D.
2
5
5

提问时间:2021-12-21

答案
如图:连接OQ,PF1,∵点Q为线段PF2的中点,∴OQ∥PF1,OQ=12PF1,∴PF1=2OQ=2b,由椭圆定义,PF1+PF2=2a,∴PF2=2a-2b∵线段PF2与圆x2+y2=b2相切于点Q,∴OQ⊥PF2,∴PF1⊥PF2,且|F1F2|=2c,∴(2b)2+(2a-2b)2=...
连接OQ,PF1,先利用三角形中位线定理证明OQ∥PF1,OQ=
1
2
PF1,而OQ即为圆的半径b,从而得焦半径PF1=2b,再利用椭圆的定义,得PF2=2a-2b,最后利用直线与圆相切的几何性质,证明PF1⊥PF2,从而在三角形中利用勾股定理得到a、b、c间的等式,进而计算离心率即可

椭圆的简单性质.

本题主要考查了椭圆的定义及其运用,直线与圆的位置关系,椭圆的几何性质及其离心率的求法,属基础题

举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.