当前位置: > 已知f(x)=x^2,g(x)=(1/2)^x-m,若对于任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥f(x2),求实数m的取值范围....
题目
已知f(x)=x^2,g(x)=(1/2)^x-m,若对于任意x1∈[0,2],存在x2∈[1,2],使得f(x1)≥f(x2),求实数m的取值范围.

提问时间:2021-12-20

答案
由于f(x)在x1∈[0,2],所以f(x1)∈[0,4],而存在x2∈[1,2],使得f(x1)≥g(x2)=(1/2)^(x2)-m所以(1/2)^(x2)∈[m,4+m],因此4+m要大于等于(1/2)^(x2)的最大值,即4+m>=1/2,从而得到m>=-7/2同4+m要小于等于(1/2)^(x2)的最小...
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.