当前位置: > f(x)=x^3-x,设a>0,如果过点(a,b)作曲线y=f(x)的三条切线,证明-a...
题目
f(x)=x^3-x,设a>0,如果过点(a,b)作曲线y=f(x)的三条切线,证明-a

提问时间:2021-11-06

答案
设切点的坐标为(t,f(t)) f'(x)=3x^2-1 过点点(a,b)的直线与曲线y=f(x)相切的直线方程 3t^2-1=[f(t)-b]/(t-a) 整理有 2t^3-3at^2+a+b=0 题意知道有三条切线,则有三个切点 也就是说t存在三个值 令G(t)=2t^3-3at^2+a+b G'(t)=6t^2-6at =6t(t-a) 令G'(t)=0 解出 t=0 或者 t=a>0 函数G(t)在(-∞,0)和(a,+∞)为增函数 在(0,a)为减函数 而G(t)=2t^3-3at^2+a+b=0存在三个不同的根 那么G(0)=a+b>0 即b>-a G(a)=-a^3+a+b
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.