题目
已知数列{an}满足:a1=1,a2=2,且 an+2=(2+cosnπ)(an-1)+3,n∈N+
求通项公式an
求通项公式an
提问时间:2021-10-16
答案
a(n+2)=(2+cosnπ)(an -1)+3
if n is odd
a(n+2)=(2+cosnπ)(an -1)+3
a(n+2)=(2-1)(an -1)+3
= an +2
a(n+2) -an = 2
an - a1= n-1
an = n
if n is even
a(n+2)=(2+cosnπ)(an -1)+3
= 3(an -1)+3
a(n+2) = 3an
an/a2 = 3^[(n-2)/2]
an = 2.3^[(n-2)/2]
ie
an = n ,if n is odd
=2.3^[(n-2)/2] ,if n is even
if n is odd
a(n+2)=(2+cosnπ)(an -1)+3
a(n+2)=(2-1)(an -1)+3
= an +2
a(n+2) -an = 2
an - a1= n-1
an = n
if n is even
a(n+2)=(2+cosnπ)(an -1)+3
= 3(an -1)+3
a(n+2) = 3an
an/a2 = 3^[(n-2)/2]
an = 2.3^[(n-2)/2]
ie
an = n ,if n is odd
=2.3^[(n-2)/2] ,if n is even
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点