当前位置: > 点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:CF平分∠AFB...
题目
点C为线段AB上一点,△ACM,△CBN是等边三角形,求证:CF平分∠AFB
其中,AN和BM交于点F AN叫CM于点D BM交CN于点E

提问时间:2021-10-14

答案
已知△ACM和△CBN是等边三角形
∴AC=MC,BC=NC,∠ACN=∠MCB=120°,∠AMC=60°
∴△ACN≌MCB (SAS)
∴∠NAC=∠BMC,即∠FAC=∠FMC
∴ACFM四点共圆
∴∠AFC=∠AMC=60°
同理,可得:∠BFC=∠BNC=60°
∴∠AFC=∠BFC=60°
即CF平分∠AFB
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.