题目
如图,四边形ABCD中,AB∥CD,∠B=∠D,BC=6,AB=3,求四边形ABCD的周长.
提问时间:2021-05-11
答案
解法一:∵AB∥CD
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC即得ABCD是平行四边形,
∴AB=CD=3,BC=AD=6,
∴四边形ABCD的周长=2×6+2×3=18;
解法二:连接AC,
∵AB∥CD,
∴∠BAC=∠DCA,
又∵∠B=∠D,AC=CA,
∴△ABC≌△CDA,
∴AB=CD=3,BC=AD=6,
∴四边形ABCD的周长=2×6+2×3=18;
解法三:连接BD,
∵AB∥CD
∴∠ABD=∠CDB,
又∵∠ABC=∠CDA,
∴∠CBD=∠ADB,
∴AD∥BC即ABCD是平行四边形,
∴AB=CD=3,BC=AD=6(5分)
∴四边形ABCD的周长=2×6+2×3=18.
∴∠B+∠C=180°,
又∵∠B=∠D,
∴∠C+∠D=180°,
∴AD∥BC即得ABCD是平行四边形,
∴AB=CD=3,BC=AD=6,
∴四边形ABCD的周长=2×6+2×3=18;
解法二:连接AC,
∵AB∥CD,
∴∠BAC=∠DCA,
又∵∠B=∠D,AC=CA,
∴△ABC≌△CDA,
∴AB=CD=3,BC=AD=6,
∴四边形ABCD的周长=2×6+2×3=18;
解法三:连接BD,
∵AB∥CD
∴∠ABD=∠CDB,
又∵∠ABC=∠CDA,
∴∠CBD=∠ADB,
∴AD∥BC即ABCD是平行四边形,
∴AB=CD=3,BC=AD=6(5分)
∴四边形ABCD的周长=2×6+2×3=18.
先证明四边形ABCD是平行四边形,再利用平行四边形的性质可求出四边形ABCD的周长.
平行四边形的判定与性质.
本题考查了平行四边形的判定与性质,熟练掌握性质定理和判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1Please sit down and Me Your birthday party
- 2一个两位数,十位上的数字与个位上的数字的和是7,如果把两个数位上的数字对调,所得两位数比原数大45,则原两位数是多少
- 3氢氧化铁胶体的制法?
- 4-113分之355是无理数吗
- 5一辆公共汽车载了一些乘客从起点出发,在第一站下车的乘客是车上总人数(含1名司机和2名售票员)的1/7.
- 6目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高
- 7用stop+V动词+ing造句
- 8人教版九年级英语上册3单元短语~
- 9把《秋思》怎么样改写成故事啊
- 10向次氯酸钙溶液中通入足量CO2 的离子方程式?