当前位置: > 设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,...
题目
设f(x)在[a,b]上一阶可导在,(a,b)内二阶可导,且f(a)=f(b)=0,
f'(a)>f'(b),证明存在c属于(a,b),使f''(c)=f(c),

提问时间:2021-05-06

答案
似乎不成立.
f(x)=sin(x) 在 [0,pi] 上.
f''(x)+f(x)=-sinx + sinx =0.若 f''(c)=f(c),则 f(c)=0,但 在 (0,pi)上,sinx>0.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.