当前位置: > 如图,在正方形ABCD中,P,Q分别在BC,CD上,PB+QD=PQ,利用两角和(差)的正切公式证明角PAQ=4派...
题目
如图,在正方形ABCD中,P,Q分别在BC,CD上,PB+QD=PQ,利用两角和(差)的正切公式证明角PAQ=4派

提问时间:2021-04-29

答案
1.设BP=X,DQ=y,正方形边长为a,角PAQ正切可以用角BAP和角DAQ的正切来表示,再将后面两个角用x,y,a表示的分式(其中含有xy,x+y); 2.在直角三角形CPQ中应用勾股定理找出x,y,a之间的关系在带入上面的分式消去xy即可得到1.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.