当前位置: > 证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)...
题目
证明:直角三角形斜边上的中线等于斜边的一半.(要求画图并写出已知、求证以及证明过程)

提问时间:2021-04-25

答案
已知:如图,在△ABC中,∠ACB=90°,CD是斜边AB上的中线,
求证:CD=
1
2
AB;
证明:如图,延长CD到E,使DE=CD,连接AE、BE,
∵CD是斜边AB上的中线,
∴AD=BD,
∴四边形AEBC是平行四边形,
∵∠ACB=90°,
∴四边形AEBC是矩形,
∴AD=BD=CD=DE,
∴CD=
1
2
AB.
作出图形,然后写出已知,求证,延长CD到E,使DE=CD,连接AE、BE,根据对角线互相平分的四边形是平行四边形判断出四边形AEBC是平行四边形,再根据有一个角是直角的平行四边形是矩形可得四边形AEBC是矩形,然后根据矩形的对角线互相平分且相等可得CD=
1
2
AB.

直角三角形斜边上的中线.

本题考查了直角三角形斜边上的中线等于斜边的一半的性质证明,作辅助线,构造出矩形是解题的关键.

举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.