当前位置: > 用二重积分求下列曲线所围成的面积...
题目
用二重积分求下列曲线所围成的面积
y=x^2,y=x+2

提问时间:2021-04-23

答案
先求直线与抛物线两个交点横坐标
y = x^2
y = x+2
x^2 -x -2 = 0
(x-2)(x+1) = 0
x1 = -1,x2 = 2
所求面积 = 直线从x1到x2 与X轴围成面积 - 抛物线从x1 到x2与X轴围成面积
S = ∫(x+2)dx -∫x^2 dx
= (x^2 /2 + 2x) - x^3/3 || 从x1 到x2
= [(2^2 /2 + 2*2) - 2^3/3 ] - [(-1)^2/2 + 2*(-1) - (-1)^3/3]
= [6 - 8/3] - [1/2 -2 + 1/3]
= 6 - 8/3 - 1/2 + 2 - 1/3
= 9/2
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.