当前位置: > 概率密度函数 求平均数...
题目
概率密度函数 求平均数
已知f(x)= 12x^2(x-1) [0,1],且f(x)= 0 ,x1,
求这个方程的期望

提问时间:2021-04-23

答案
这是一个连续函数求期望问题,你只需要在[0,1]上对f(x)= 12x^2(x-1) 积分就好了.
如果我没理解错的话,你的F(X)=12*[E的2(X-1)次幂]
则期望EX=(积分号在区间0-1) {12*[E的2(X-1)次幂]}*DX
=(积分号在区间0-1) {12*(1/2)*D[E的2(X-1)次幂]}
=(积分号在区间0-1) {6*D[E的2(X-1)次幂]}
=6*[E的2(X-1)次幂] | (当X=1) ----6*[E的2(X-1)次幂] | (当X=0)
=6---6*(E的-2次幂)
=6*[1-(E的-2次幂)]
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.