题目
如图,P是线段AB上一点,△APC与△BPD是等边三角形,请你判断AD与BC相等吗?并证明你的判断.
提问时间:2021-04-11
答案
AD=BC.
证明如下:
∵△APC与△BPD是等边三角形,
∴AP=PC,PD=PB,∠APD=∠CPB=60°+∠CPD.
∴△APD≌△CPB.
∴AD=BC.
证明如下:
∵△APC与△BPD是等边三角形,
∴AP=PC,PD=PB,∠APD=∠CPB=60°+∠CPD.
∴△APD≌△CPB.
∴AD=BC.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点