当前位置: > 已知特征值如何求得基础解系...
题目
已知特征值如何求得基础解系
|λE-A|=|λ-2 1 -2|=(λ+1)^3
|-5 λ+3 -3|
|1 0 λ+2|
所以,A的特征值为-1.把λ=-1代入方程组(λE-A)X=0中,该方程组的系数矩阵为
-3 1 -2 1 0 1 1 0 1 1 0 1
-5 2 -3 → -5 2 -3 → 0 2 2 → 0 1 1
1 0 1 -3 1 -2 0 1 1 0 0 0
所以,该方程组与x1+x3=0,x2+x3=0同解,令x1=1,得到方程组的一个基础解系为(1,1,-1)^T
如何求出(1,1,-1)^T?

提问时间:2021-04-11

答案
随便假设的x1=1啊...基础解析有无数个可能的,在你假设不一样而已..
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.