当前位置: > 设f(x)=ax^2+bx+c(a,b,c属于R,a≠0),f(x)在区间[-2,2]上的最大值,最小值分别为M,m,集合A={x|f(x)≤x},若A=2,a∈[2^n,+∞) (n∈N+),M-n...
题目
设f(x)=ax^2+bx+c(a,b,c属于R,a≠0),f(x)在区间[-2,2]上的最大值,最小值分别为M,m,集合A={x|f(x)≤x},若A=2,a∈[2^n,+∞) (n∈N+),M-n的最小值记为g(n),估算使g(n)∈[10^3,10^4]的一切n的值!

提问时间:2021-04-09

答案
首先f(x)≤x,可以推出x=2,我们直接把这个不等式全划到一边ax^2+(b-1)x+c≤0
由已知的范围a>0的,
所以这个不等式一定可以划为a(x-2)^2≤0,只有这样才可能只有一个x满足题意,
打开,有ax^2-4ax+4a≤0
对比两边系数,可以知道b=1-4a,c=4a,
那么f(x)=ax^2+(1-4a)x+4a
所以开口向上的二次函数f(x)对称轴就是(4a-1)/(2a)=2-1/(2a)
因为a∈[2^n,+∞),所以1/2a(0,1/2^(n+1)],
所以f(x)在x=2-1/(2a)时取最小值,在x=-2时取最大值
M=f(-2)=4a+8a-2+4a=16a-2
显然a越大M越大
g(x)=M-n=16a-2-n≥16*2^n-n-2=2^(n+4)-n-2
通过常识我们知道g(n)∈[10^3,10^4]时,2^(n+4)远大于n+2
所以通过2^(n+4)∈[10^3,10^4]来寻找可能的n,
经试验,2^7=128,2^8=256,2^9=512,2^10=1024(因为还要减去n+2,所以多试验一个)
然后n可能的值就是n=3或4或5(n=6不满足题意了就舍去了)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.