当前位置: > 已知二次函数f(x)=ax2+bx+c,f(-2)=f(0)=0,f(x)的最小值为-1...
题目
已知二次函数f(x)=ax2+bx+c,f(-2)=f(0)=0,f(x)的最小值为-1
设函数h(x)=log2[n-f(x)],若此函数在定义域范围内不存在零点,求实数n的取值范围.

提问时间:2021-04-08

答案
由f(0)=f(-2)=0,设f(x)=ax(x+2)=a(x+1)^2-a
最小值=-a=-1,得a=1
故f(x)=x^2+2x
h(x)的定义域是:n-f(x)>0
即f(x)-n<0
h(x)不存在零点,即n-f(x)=1没实根
即n-x^2-2x=1无实根
x^2+2x+1-n=0无实根,即判别式<0
4-4(1-n)<0
得:n<0
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.