当前位置: > 设F1F2是椭圆的两个焦点,F1F2=2,点P在椭圆上,使PF1F2为直角三角形的点P恰好有4个则椭圆的标准方程为...
题目
设F1F2是椭圆的两个焦点,F1F2=2,点P在椭圆上,使PF1F2为直角三角形的点P恰好有4个则椭圆的标准方程为

提问时间:2021-04-08

答案
角PF1F2为直角时 一定会存在两个满足条件的P,角PF2F1为直角时,一定有另外两个点P满足条件.可以证明焦三角形非焦顶点对应的内角当且仅当非焦顶点在短轴端点时取得最大,因此只要保证当p在短轴端点时角f1pf2小于九十度的椭圆方程应该都能满足条件
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.