题目
把一枚六个面编号分别为1、2、3、4、5、6的质地均匀的正方体骰子先后投掷2次,若两个正面朝上的编号分别m,n,求二次函数y=x2+mx+n的图象与x轴只有一个交点的概率.
提问时间:2021-04-07
答案
∵二次函数y=x2+mx+n的图象与x轴只有一个交点,
∴m2-4n=0,
即:m2=4n,
当m=1,m=3,m=5,m=6时,求的n值都不符合题意,
当m=2时,n=1符合题意,
当m=4时,n=4符合题意
即有两个符合题意,
由已知可知共有6×6种情况,
∴二次函数y=x2+mx+n的图象与x轴只有一个交点的概率是
=
.
故二次函数y=x2+mx+n的图象与x轴只有一个交点的概率是
.
∴m2-4n=0,
即:m2=4n,
当m=1,m=3,m=5,m=6时,求的n值都不符合题意,
当m=2时,n=1符合题意,
当m=4时,n=4符合题意
即有两个符合题意,
由已知可知共有6×6种情况,
∴二次函数y=x2+mx+n的图象与x轴只有一个交点的概率是
2 |
6×6 |
1 |
18 |
故二次函数y=x2+mx+n的图象与x轴只有一个交点的概率是
1 |
18 |
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
最新试题
热门考点