当前位置: > 初一几何证明题:如图,BD=CD,BF⊥AC于点F,CE⊥AB于点E.求证:点D在∠BAC的角平分线上...
题目
初一几何证明题:如图,BD=CD,BF⊥AC于点F,CE⊥AB于点E.求证:点D在∠BAC的角平分线上
初一下册课时作业上的

提问时间:2021-04-07

答案
图在哪?如果BF交CE于点D,那么证明如下:
∵BF⊥AC于点F,CE⊥AB于点E
∴∠BED=∠CFD=90°
又∵∠BDE=∠CDF,BD=CD
∴△BDE≌△CDF(AAS)
∴DE=DF
∴点D在∠BAC的角平分线上 (角平分线上的点到角两边的距离相等)
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.