题目
1——2000这2000个数中,最大可取出几个数,使得这些数中任意3个数的和都不能被7整除
提问时间:2021-04-06
答案
按被7除的余数分组
余1的个数:1到1996共286个
余2的个数:2到1997共286个
余3的个数:3到1998共286个
余4的个数:4到1999共286个
余5的个数:5到2000共286个
余6的个数:6到1994共285个
余0的个数:7到1995共285个
除余0的那组外,每组里任取3个数,其和都不能被7整除.
再考虑不同的组混合.
余1+余2 ,可以,572个
余1+余4 ,可以,572个
余1+余6 ,可以,571个
余2+余4 ,可以,572个
余2+余5 ,可以,571个
余3+余4 ,可以,572个
余3+余5 ,可以,571个
余3+余6 ,可以,571个
2组的不可能超过572个.
3组的不可能.
因此取余1、余2的2组共574个数,及加入余0组的2个数,共574个数,可以保证任意三个数之和都不能被7整除.
参考链接是我答的一题类似的.
余1的个数:1到1996共286个
余2的个数:2到1997共286个
余3的个数:3到1998共286个
余4的个数:4到1999共286个
余5的个数:5到2000共286个
余6的个数:6到1994共285个
余0的个数:7到1995共285个
除余0的那组外,每组里任取3个数,其和都不能被7整除.
再考虑不同的组混合.
余1+余2 ,可以,572个
余1+余4 ,可以,572个
余1+余6 ,可以,571个
余2+余4 ,可以,572个
余2+余5 ,可以,571个
余3+余4 ,可以,572个
余3+余5 ,可以,571个
余3+余6 ,可以,571个
2组的不可能超过572个.
3组的不可能.
因此取余1、余2的2组共574个数,及加入余0组的2个数,共574个数,可以保证任意三个数之和都不能被7整除.
参考链接是我答的一题类似的.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1改错 括号选择 横线改错
- 2起个粉丝名、 我叫鹿晨曦、 最好是一个物品带xi字读音的、比如奶昔啊(可惜被李媛希用了
- 3You should go straight at the first crossing.这句话对吗
- 4克隆对我们人类或大自然的意义
- 51molC10H22中含有共价键的数目为31NA?是怎样算出来的?
- 6present的意思 连词成句:birthday,present,a,for,his,him,gives,she
- 7在《描绘小灯泡的伏安特性曲线》的实验中:① 由于小灯泡的电阻较小,故采用电流表( )的测量电路;因为
- 8He goes to school()around seven(in)the morning.
- 9400字作文大自然的奥秘
- 10设等差数列{an}的前n项和为Sn,若S4≥10,S5≤15,则a4的最大值为_.