当前位置: > 设n为正整数,求证(3的n次方+3的(n+2)次方+6的2n次方)能被33整除....
题目
设n为正整数,求证(3的n次方+3的(n+2)次方+6的2n次方)能被33整除.

提问时间:2021-04-01

答案
(3的n次方+3的(n+2)次方+6的2n次方)=3^N+3^(N+2)+6^2N
用假设法
假设N=1
3^N+3^(N+2)+6^2N=3+3^3+6^2=3+27+36=66,能被33整除,故假设成立.
假设N=K的时候,3^K+3^(K+2)+6^(2K)被33整除成立,则当N=K+1的时候.
3^N+3^(N+2)+6^2N
=3^(K+1)+3^(K+1+2)+6^2(K+1)
=3×(3^K)+3×[3^(K+2)]+6^2×6^(2K)
=3×[3^K+3^(K+2)+6^(2K)]+6^2×6^(2K)-3×6^(2K)
=3×[3^K+3^(K+2)+6^(2K)]+33×6^(2K)
由于3^K+3^(K+2)+6^(2K)和33×6^(2K)都能被33整除,故假设成立.
举一反三
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
1,人们染上烟瘾,最终因吸烟使自己丧命.
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.