当前位置: > lim→0[∫(上限x,下限0)(1+t^2)e^t^2dt]/xe^x^2...
题目
lim→0[∫(上限x,下限0)(1+t^2)e^t^2dt]/xe^x^2

提问时间:2021-04-01

答案
分析:当x→0时,分子分母均趋向于0,且分子分母对应的函数均为连续函数,由此考虑用洛必达法则.
原式=lim(x→0)[(1+x^2)(e^x^2)]/[(e^x^2)+2xe^(x^2)]
=lim(x→0)(1+x^2)/(1+2x)
=1
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.