题目
已知n,k均大于1 的整数,求证:1+1/2k次方+1/3k次方+…..+1/nk次方 ﹤2
提问时间:2021-04-01
答案
这题要用放缩法结合数学归纳法证明,证明如下:
(1)当k=2时,原式左边=1+1/2^2+1/3^2+...+1/n^2
而注意到1/n^2<1/[n(n-1)]=1/(n-1)-1/n,(n>=2)
于是1+1/2^2+1/3^2+...+1/n^2<1+1-1/2+1/2-1/3+...+1/(n-1)-1/n=2-1/n<2
即当k=2时结论显然成立.
(2)假设k=x时结论1+1/2^x+1/3^x+...+1/n^x<2成立.则当k=x+1时,注意到此时有y原式左边=1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)
而由于n是大于等于2的整数,于是显然有从第二项开始i^(x+1)于是1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)<1+1/2^x+1/3^x+...+1/n^x<2
即囊k=x+1时结论也成立.
综合(1)、(2)知1+1/2^k+1/3^k+...+1/n^k<2对n∈N*,k∈N*,n,k>=2都成立.
(1)当k=2时,原式左边=1+1/2^2+1/3^2+...+1/n^2
而注意到1/n^2<1/[n(n-1)]=1/(n-1)-1/n,(n>=2)
于是1+1/2^2+1/3^2+...+1/n^2<1+1-1/2+1/2-1/3+...+1/(n-1)-1/n=2-1/n<2
即当k=2时结论显然成立.
(2)假设k=x时结论1+1/2^x+1/3^x+...+1/n^x<2成立.则当k=x+1时,注意到此时有y原式左边=1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)
而由于n是大于等于2的整数,于是显然有从第二项开始i^(x+1)于是1+1/2^(x+1)+1/3^(x+1)+...+1/n^(x+1)<1+1/2^x+1/3^x+...+1/n^x<2
即囊k=x+1时结论也成立.
综合(1)、(2)知1+1/2^k+1/3^k+...+1/n^k<2对n∈N*,k∈N*,n,k>=2都成立.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
最新试题
热门考点
- 1制备(NH4)2Fe(SO4)2•6H2O时,在蒸发浓缩过程中,若溶液变为黄色,是什么原因,
- 2艾米感觉怎样 英文
- 3∫(3x+1)(4x+1)dx,怎么算
- 4一辆汽车从A地开往B地,如果每小时行90千米,可提前0.5小时到达.如果每小时行60千米,将晚点0.5小时,正点到达需要多少小时?AB两地的距离是多少千米?
- 5Few are those who have never had the chance to achieve happiness,but fewer those who have one?
- 62009青岛版初一下学期暑假园地答案
- 7末位是0的整数,可以被5整除吗?
- 8miss wang is our new teacher we like her l—— very much her home is near our school
- 9求两篇120词左右的原创英语作文,强烈要求原创
- 10沙子怎么用方计算的?