当前位置: > 用微元法求曲线y=sinx(-π≤x≤π)绕x轴旋转一周而形成的旋转体的体积...
题目
用微元法求曲线y=sinx(-π≤x≤π)绕x轴旋转一周而形成的旋转体的体积

提问时间:2021-04-01

答案
就看0-π段:将0-π分为n(n→∞)段,每段Δx=π/n,将旋转体分为无数个薄片
对于左边为xi的薄片(xi=iΔx)Vi=πΔx(sin(xi))²=0.5πΔx(1-cos(2xi))
求和V=ΣVi=Σ0.5πΔx-0.5πΣΔxcos(2xi)
=0.5π²-0.5πΔx[sin(nΔx)cos((n+1)Δx)]/[sinΔx] (根据余弦级数和公式)
=0.5π²-0.5πsin(nΔx)cos(nΔx)
=0.5π²-0.25πsin(2nΔx)
=0.5π²-0.25πsin2π
=0.5π²
左边也一样,所以体积=2V=π²
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.