当前位置: > 一道大学微积分选择题...
题目
一道大学微积分选择题
关于函数z=f(x,y),在约束条件g(x,y)=0(f(x,y),g(x,y)处处可微)下的极值点P(a,b)的可能范围,合理的描述为()
A.完全包含在g(x,y)=0与等值线f(x,y)=c相切的切点集合中
B.完全包含在f(x,y)=0与等值线g(x,y)=c相切的切点集合中
C.完全包含在使得偏导数fx(x,y),fy(x,y)都为零的驻点集合中
D.以上都不对
我会耐心等待的,直到有很详细的解释出现...

提问时间:2021-04-01

答案
现在就你的问题向你提出本人见解,
首先可以马上排除选项B,因为f(x,y)=0与等值线g(x,y)=c相切的点全部都满足f(x.y)=0,如果极值点出现在这些点当中,将意味着所求的极值z=f(a,b)恒等于0!这显然是极端荒谬的!
另外条件极值的极值点和无条件极值的极值点没有必然的联系.诚然对于处处可微的多元函数,它的极值点一定包含在各个偏导数为0的驻点中.但对于条件极值这个关系不成立.举个例子,z=sqrt(x^2+y^2+1),sqrt表示二次根号,约束条件为x+y-1=0容易求得(0,0)是z(x,y)的唯一驻点.但是这个条件极值的极值点却是(1/2,1/2)!所以选项C也是错误的!
最后来看选项A.所求的条件极值就是在曲面z=f(x,y)上找出满足g(x,y)=0的极值.但是g(x,y)=0不一定与等值线相切哦.举个例子,z=f(x,y)表示球心在原点的单位球的上半球面方程,g(x,y)=x-y,那么g(x,y)=0表示一个过z轴的平面.易见(0,0)是极值点,极大值为1.但是,f(x,y)=c表示的是一个与
xoy平面平行,以z轴为轴线的圆,这样g(x,y)=0 显然不可能与这个圆相切.于是A的说法也是错误的.所以最后选答案D.
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.