当前位置: > 如图在△ABC中,已知AB=AC,∠A=90°,∠ABD=∠CBE,CE⊥BD,交BD的延长线于点E.求证BD=2CE....
题目
如图在△ABC中,已知AB=AC,∠A=90°,∠ABD=∠CBE,CE⊥BD,交BD的延长线于点E.求证BD=2CE.

提问时间:2021-03-28

答案
证明:延长BA、CE,两线相交于点F
∵BE⊥CE
∴∠BEF=∠BEC=90°
在△BEF和△BEC中
∠FBE=∠CBE,BE=BE,∠BEF=∠BEC
∴△BEF≌△BEC(ASA)
∴EF=EC
∴CF=2CE
∵∠ABD+∠ADB=90°,∠ACF+∠CDE=90°
又∵∠ADB=∠CDE
∴∠ABD=∠ACF
在△ABD和△ACF中
∠ABD=∠ACF,AB=AC,∠BAD=∠CAF=90°
∴△ABD≌△ACF(ASA)
∴BD=CF
∴BD=2CE
举一反三
已知函数f(x)=x,g(x)=alnx,a∈R.若曲线y=f(x)与曲线y=g(x)相交,且在交点处有相同的切线,求a的值和该切线方程.
我想写一篇关于奥巴马的演讲的文章,写哪一篇好呢?为什么好
奥巴马演讲不用看稿子.为什么中国领导演讲要看?
想找英语初三上学期的首字母填空练习……
英语翻译
版权所有 CopyRight © 2012-2019 超级试练试题库 All Rights Reserved.